
Problem A
Pair Game

Number of Test Cases: 14
Excution Time Limit: 10 seconds

NCPC created a new solitary game called the Pair Game. The game starts with having
2n cards on the table. The 2n cards each has a number on it. The number is between 1
and n and each number appears on exactly two cards. The cards are dealt onto the table
face down forming a row of 2n cards. To play the game, the player continuously picks
two neighboring cards from the table and turn them over. If the two cards have the same
number, both cards are removed from the table; otherwise, two cards swap positions and
turned face down again. Taking two cards off the table or swapping two cards on the
table is considered a move. Player must try to clear all cards on the table within a given
number of moves.

The game is won if all cards are removed from the table before using up the allowed
number of moves. NCPC wants to ensure the game is always winnable, but also not too
easy to win, so the number of moves allowed will be set to some multiple of the least
(optimal) number of moves necessary to remove all cards. Given the configuration of the
2n cards, please find the least number of moves required to win the game so the proper
limit can be set.

For example, if there are initially 6 cards with numbers 1 2 3 1 2 3 on the table. The
following two sequences of six moves show that with three swaps and three remove moves,
all cards can be removed from the table.

1 2 3 1 2 3 → 2 1 3 1 2 3 → 2 3 1 1 2 3 → 2 3 2 3 → 3 2 2 3 → 3 3 → no more card

1 2 3 1 2 3 → 2 1 3 1 2 3 → 2 1 1 3 2 3→ 2 3 2 3 → 2 3 3 2 → 2 2 → no more card

There are no possible sequence of fewer moves to remove all cards. Therefore, 6 is the least
number of moves required to win the game.

Input File Format

There are more than one test cases in the input file. The first line contains a single integer
indicating the number of test cases to follow. Each test case starts with a positive integer n
(n ≤ 10, 000), followed by 2n positive integers denoting the numbers on the 2n cards that are
on the table.

Output Format

For each test case, print the least number of swaps needed to clear all cards on the table on one
line.

1

Sample Input

2

3 1 2 3 1 2 3

3 3 2 1 1 2 3

Output for the Sample Input

6

3

2

Solution

Mathematical Model of the Problem

Two observations:
1. Number of Remove moves = n, because every pair need to be removed.
2. In a subsequence A, ni, nj, nk, A, assume ni ̸= nj ̸= nk, then 3 swaps are needed to
remove A. After swapping, relative order of ni, nj, nk is preserved.

Algorithm and Time Complexity of the Problem

By summing the number of distinct numbers (ni, nj, ...) between pair of numbers for all
numbers, the number of swaps is the sum/2, as each swap will be counted twice. This
algorithm takes O(n2) time.

With segment tree/Interval tree, it takes O(n) to build the tree. Once built, it takes
O(logn) time to search and update the tree. To go through all n pairs, the total time is
therefore bounded by O(nlogn).

3

4

Problem B
Minesweeper

Number of Test Cases: 100
Excution Time Limit: 2 seconds

Problem

A minesweeper sails the ocean and detonates the mines. The minesweeper starts at the
origin (0, 0) and sails according to a sequence of n commands. The first part of the
command is the direction – 0 for the east, 1 for the north, 2 for the west, and 3 for the
south. The second part of a command is the distance. For example, if the first command
is (0, 100), the minesweeper will sail from (0, 0) to (100, 0).

There are m mines in the ocean, each in the position (xi, yi), for i between 1 and m. If the
minesweeper is within a detection distance d from a mine, then it will detonate the mine.
For simplicity, we define the distance between two points as the maximum difference in
the x and y coordinates of the two points. For example, if d is 3, the current position
of the minesweeper is (9, 2) and there is a mine in (12, 0), the minesweeper will detonate
it because the distance between them is max(|9 − 12|, |2 − 0|) = 3, which is not greater
than d = 3. However, if the mine is at location (12, 6), the minesweeper cannot denote
it because the distance between them is now max(|9 − 12|, |2 − 6|) = 4, which is greater
than d = 3.

Now we define the task. We are given the detection distance d, a sequence of n commands,
and the locations of m mines, and we need to determine the number of mines that the
minesweeper will detonate.

Input File Format

There is more than one test case in the input file. Each test case starts with the positive
mine detonation distance d, where d is no more than 100. The input then has a positive
integer n, the number of commands to the minesweeper, where n is no more than 1000.
The input then has n pairs of integers. The first integer in a pair is the direction in which
the minesweeper will go and the second integer is the distance it will go. The direction
is from 0 to 3 and the distance is a positive integer no more than 10000. Then there is a
positive integer m, the number of mines, followed by m pairs of integers that indicate the
coordinates x and y of a mine. m is no more than 10000000. Note that there could be
multiple mines at the same location. The coordinates of the mines and the minesweeper
are always between −2147483648 and 2147483647. The last line contains only an integer
0 to indicate the end of the input.

5

Output Format

For each test case, print the number of mines that the minesweeper detonates on one line.

Sample Input

1

4

0 10 1 10 2 10 3 10

7

0 0 -1 -1 11 -1 9 9 1 9 5 5 -1 -1

1

4

0 10 2 10 0 10 2 10

7

0 0 -1 -1 11 -1 9 9 1 9 5 5 -1 -1

0

Output for the Sample Input

6

4

6

Solution

First, we realize that the course of the minesweeper is horizontal or vertical. As a result,
we can use a set of rectangles to store the area the minesweeper can detect the mines.
We then sort the left-lower corners, the right-upper corners of these rectangles, and the
positions of the mines according to the x coordinates, and place them into an array P . It
is easy to see that the sorting to build P takes O((m+ n) log(m+ n)) time.

We then process these positions in P from left to right. If we encounter a left-lower
corner. we add a segment into a segment tree S. If we encounter a right-upper corner. we
remove the corresponding segment from S. Finally, if we encounter a mine position then
we check if it is with any segment within S. It is easy to see that it takes O(log(m+ n))
time to process a point, and the number of points is O(m+ n). As a result, it also takes
O((m+n) log(m+n)) time to process the points in P . Therefore the total execution time
is O((m+ n) log(m+ n)).

7

8

Problem C
Anchor Chains

Number of Test Cases: 10
Excution Time Limit: 3 seconds

Peter is a biologist. He estimates the similarity of two genome sequences P and Q as
follows. If a subsequence P [a, b] of P , where a ≤ b, and a subsequence Q[c, d] of Q, where
c ≤ d, are identified to be closely related, we say that there is an anchor at (a, b, c, d) and
give a weight to it. (Intuitively, anchors indicate small matches.) We say that an anchor
(a, b, c, d) precedes another anchor (a′, b′, c′, d′) if b < a′ and d < c′. For example, anchor
(2, 5, 1, 9) precedes anchor (9, 12, 10, 11). Let M be the set of the anchors of P and Q.
Let C = (A1, A2, ..., Ap) be a sequence of the anchors in a subset of M , where p ≥ 1. We
call C an anchor chain if Ai precedes Ai+1 for 1 ≤ i < p and when C is an anchor chain
we define its score to be

Score(C) =
∑
1≤i≤p

w(Ai),

where w(Ai) is the weight ofAi. For example, C = ((2, 5, 1, 9), (9, 12, 10, 11), (14, 15, 16, 19))
is an anchor chain and its score is w((2, 5, 1, 9)) + w((9, 12, 10, 11)) + w((14, 15, 16, 19)).
The similarity of P and Q, denoted by Similar(P,Q), is the maximum score of an anchor
chain of P and Q. That is,

Similar(P,Q) = max{Score(C) | C is an anchor chain of P and Q}.

Please write a program to help Peter.

Technical Specification

� The number of test cases is at most 10.

� The number of anchors is at most 106.

� For each anchor (a, b, c, d) with weight w, we have a ≤ b, c ≤ d, and 1 ≤ a, b, c, d, w ≤
109.

Input File Format

The first line contains an integer indicating the number of test cases. Each test case
begins with a line containing an integer n, indicating the number of anchors. Each of
the next n lines gives five integers a, b, c, d, w, indicating that there is an anchor (a, b, c, d)
with weight w.

9

Output Format

For each test case, print Similar(P,Q) in a line.

Sample Input

2

5

9 12 10 11 5

2 5 1 9 3

1 1 1 1 2

12 13 12 14 2

14 15 16 19 1

3

4 8 2 6 3

5 10 9 12 5

1 3 5 10 4

Output for the Sample Input

9

5

10

Solution

Algorithm and Time Complexity of the Problem

A DP algorithm is as follows. Let M [1],M [2], . . . ,M [n] be the anchors in M . Presort the
anchors in M such that the anchors are arranged in non-decreasing order of M [i].a. Let
C[i] be the maximum score of a chain ending at M [i]. Then, our problem is to compute
max{C[1], C[2], . . . , C[n]}. Clearly, C[1] = w(M [1]) and for i > 1, we have

C[i] = w(M [i]) + max{C[j] | 1 ≤ j < i,M [j] precedes M [i]}.

A naive implementation takes O(n2) time. An O(n log n)-time implementation is de-
scribed below. An RMQ (range minimum query) data structure (such as a segment tree)
D is maintained for the computation. Let E[1, 2n] be the sorted sequence of all the
endpoints M [i].a and M [i].b. We scan the endpoints in E and do the following.

Case 1: The current endpoint is an M [i].a. We query D to find
m = max{C[j] | C[j] in D and M [j].d < M [i].c} and then compute
C[i] = w[i] +m; and

Case 2: The current endpoint is an M [i].b. We store C[i] into D with M [i].d
as its key.

Note that if several C[j] in D have the same d, only keep the largest one.

11

12

Problem D
The 231 Pattern

Number of Test Cases: 20
Excution Time Limit: 1 second

Bob has a stock, whose price at time i ∈ {1, 2, . . . , n} is A[i]. Usually, he feels fine with
rises and falls of the stock price. However, if the stock price rises from a value x and then
falls to below x, then he will be upset. In detail, he will be upset if there exist indices i,
j, k ∈ {1, 2, . . . , n} such that

� i < j < k,

� A[i] < A[j], and

� A[k] < A[i].

So, for example, if A[i] = 2, A[j] = 3 and A[k] = 1 for some 1 ≤ i < j < k ≤ n, then Bob
will be upset.

Please determine whether Bob will be upset. If the answer is affirmative, please also
output indices i, j, k ∈ {1, 2, . . . , n} satisfying i < j < k and A[k] < A[i] < A[j].
Hint: There is a beautiful and asymptotically optimal algorithm using a stack. Alterna-
tively, assuming that you have a data structure (e.g., a balanced binary search tree) T
with keys A[1], A[2], . . ., A[i − 1], you may want to find the maximum key in T that is
less than A[i]. Then you may want to insert A[i] into T and increase i. Note that the
minimum among A[i+ 1], A[i+ 2], . . ., A[n] can be calculated in the order of decreasing
i.

Input File Format

The input begins with the number of test cases, which is at most 20. Each test case is
given by n, A[1], A[2], . . ., A[n], in that order. Any two consecutive integers are separated
by whitespace character(s). It is known that 1 ≤ n ≤ 105 and that 1 ≤ A[i] ≤ 108 for all
1 ≤ i ≤ n.

Output Format

For each test case:

� If Bob will not be upset, then please output “no”.

� Otherwise, please output “yes”, i, j and k (in that order) satisfying 1 ≤ i < j <
k ≤ n and A[k] < A[i] < A[j]. If there are two or more correct solutions, please just
output one of them arbitrarily.

13

Sample Input

4

5 20 3 30 80 10

5 1 2 3 4 5

5 4 3 6 7 8

7 2 15 4 6 40 7 80

Output for the Sample Input

yes 3 4 5

no

no

yes 2 5 6

14

Solution

Mathematical Model of the Problem

Determine whether an array contains “231.”

Algorithm and Time Complexity of the Problem

Consider the following algorithm, called stack sorting:

1: Initialize an empty stack S;
2: for i = 1 to n do
3: while S is nonempty and A[i] is greater than the top of S do
4: Pop the top of S to the output;
5: end while
6: Push A[i] onto S;
7: end for
8: while S is nonempty do
9: Pop the top of S to the output;
10: end while

Now pick 1 ≤ i < j ≤ n arbitrarily. Observe that if A[i] < A[j], then A[i] gets output
before A[j]: If A[i] remains to be in S when A[j] arrives, then A[j] will force A[i] out of
S. Assuming A[i] > A[j],

(i) If A[ℓ] > A[i] for some i < ℓ < j, then the arrival of A[ℓ] will force the output of A[i]
(if A[i] is yet to be output), implying that stack sorting outputs A[i] before A[j].

(ii) If A[ℓ] ≤ A[i] for all i < ℓ < j, then A[i] will remain to be in S when A[j] arrives,
implying that A[j] gets output before A[i].

In summary,

� with a 231 pattern, item (i) will happen for some i, j and ℓ, forbidding stack sorting
to sort correctly (into the ascending order).

� without a 231 pattern, item (ii) will happen for all i < j such that A[i] > A[j],
implying stack sorting to sort correctly (into the ascending order). Note that for all
i < j such that A[i] < A[j], A[i] does get output before A[j], as observed near the
beginning of this subsection.

So the solution is to see whether stack sorting sorts correctly. This takes O(n) time.

Source: I found the thing on wikipedia, which says that the real source is Knuth’s The
Art of Computer Programming.

15

16

Problem E
30-Day Pass

Number of Test Cases: 100
Excution Time Limit: 1 second

You are considering whether to purchase a 30-day pass for commuting in Taipei. The 30-
day pass costs 1200 NT dollars and provides unlimited rides on all public transportation
for 30 consecutive days. If you pay as you go, it will cost you x NT dollars per weekday
(Monday–Friday) and y NT dollars per day on weekends (Saturday and Sunday). We are
interested in determining if using the 30-day pass will save you money over the next 30
days.

You are designing a web page where users can input the values of x and y, as well as the
number a of weekdays and the number b of days on weekends over the next 30 days. The
goal is to determine whether buying the 30-day pass is strictly cheaper than paying as
you go.

Note that the values of x, y, a, and b are input by users, so they may contain some errors.
Each of these four numbers is a non-negative integer with at most 80 digits. You may
assume that no input number will start with zero unless the number is zero. Clearly, a
necessary condition is a+ b = 30. If the combination of a weekdays and b weekend days is
impossible for any 30-day period, your program should be able to detect this and report
an error.

Input File Format

There are multiple test cases in the input file. The first line contains exactly one integer t
(t ≤ 100), indicating the number of test cases. Each test case consists of the four numbers
x, y, a, b on a line.

17

Output Format

For each test case, if it is impossible to have a weekdays and b days on weekends for any
30-day period, output “Wrong Input”. Otherwise, determine whether buying the 30-day
pass is strictly cheaper than paying as you go. If the 30-day pass is strictly cheaper,
output “30-Day Pass”. If paying as you go is cheaper, output “Pay As You Go”. If the
costs are the same, output “Equally Good”.

Sample Input

4

30 45 15 15

30 67 22 8

30 68 22 8

40 40 22 8

Output for the Sample Input

Wrong Input

Pay As You Go

30-Day Pass

Equally Good

18

Solution

Mathematical Model of the Problem

Algorithm and Time Complexity of the Problem

19

20

Problem F
Stats

Number of Test Cases: 20
Excution Time Limit: 3 seconds

String matching is a famous problem. In this problem, you are given a text string T
and a pattern string P , and the goal is to find all places where P happens in T . For
example, let T = aabb and P = ab. We can see that P happens at position 2 of T ,
namely the fragment with an underline in aabb. Notice that the position of a string
starts from 1, and we use the left position to describe a match of P in T . A pattern may
happen at several places in a text. For example, pattern a happens at positions 1 and
2 in text aabb. Therefore, given T and P , we can list the positions of all matches of P
against T , order them from left to right, to get a sequence. This sequence is called the
occurrence distribution of P relative to T , and we use occ(T, P) to denote it. For example,
occ(aabb, a) = [1, 2].

You are a string statistician. You want to collect some information about the occurrence
distributions of a text string. Take text T = aabab as an example. You draw the following
table to analyze the occurrence distributions:

pattern distribution
a 1, 2, 4
b 3, 5
aa 1
ab 2, 4
ba 3
aba 2
aaa nowhere

While building this table, you observed an interesting fact that different patterns may
get the same occurrence distribution. For example, occ(T, aab) = [1], which is equal to
occ(T, aa) in the 3rd row. Similarly, occ(T, abab) = [2], which is equal to occ(T, aba) in
the 6th row. You want to find as many distinct occurrence distributions as possible for a
text. Notice that we do not consider an empty string as a legal pattern. Therefore, there
are totally 7 different occurrence distributions for the text aabab. Please write a program
to count the total number of different occurrence distributions for a given string.

Input File Format

The first line contains an integer k, the total number of test cases, k ≤ 20. In the next
k lines, each line gives you one text string that has at least one character. A text string
is composed of lowercase English letters. The total length of all text strings in the input
file is at most 106.

21

Output Format

For each test case, output the answer in one line.

Sample Input

5

aaa

bbbb

abab

aaab

ncpcistttoughfffbutcccreative

Output for the Sample Input

4

5

5

7

38

22

Solution

Mathematical Model of the Problem

Let T = T [1, n] be a text string. In order to get the occurrence distributions of T , we only
need to consider factors (substrings) of T as the candidates of patterns. Let P be one of
them. Then you can apply any string matching algorithm in order to get the occurrence
distribution occ(T, P). Since there are at most O(n2) factors of T , there can be at most
O(n2) different occurrence distributions. However, this approach takes too much time.

Algorithm and Time Complexity of the Problem

Notice that if two patterns P and Q have the same occurrence distribution, then the
shorter one must be a proper prefix of the longer one, since they can be overlapped and
aligned at the same starting position. Without loss of generality, assume P is shorter
than Q. We use the notation P ◁ Q to signify that P is a proper prefix of Q. Observe
that if there is a factor R such that P ◁ R ◁ Q and occ(T, P) = occ(T,Q), then occ(T,R)
is also identical. This means that if we collect all patterns that have the same occurrence
distribution in the ascending way, they form a contiguously incremental fragments (i.e.,
the latter one has one more character in the end than the immediately previous one). If
we construct the suffix tree of T , those patterns with the same occurrence distribution
actually correspond to an edge in the suffix tree. (Actually, they are paths start from
the root and end at the same edge.) Accordingly, their same occurrence distribution
corresponds to the set of labels of suffixes below this edge. Therefore, the total number of
different occurrence distributions is equal to the total number of edges in the suffix tree,
plus one with no match. The construction of a suffix tree takes time O(n lg σ) where n is
the length of T and σ is the alphabet size. In our case, σ is 26. A simpler way to solve
this problem is to construct a suffix automaton DAWG (Directed Acyclic Word Graph)
that works similarly as a suffix tree. (The code in C++ is less than 60 lines.) The time
complexity is still O(n lg σ).

23

24

Problem G
Secrets of Polynomial Modulo Prime Power

Number of Test Cases: 20
Excution Time Limit: 1 second

Bob is a number wizard, always curious about how numbers behave. One day, he stumbles
upon polynomials with integral coefficients. He is fascinated by the idea of finding their
roots, the special numbers that made them equal to zero, and thinks about using the
roots to hide secrets for communication. For simple polynomials with a small modulo,
finding roots can be done by searching through all possibilities. But when the polynomials
become bigger and the modulo is unknown, things get tricky. Bob realizes that finding
roots isn’t just about solving equations; it is about understanding the deeper patterns
within the numbers.

For example, Bob observes the following. For a polynomial f(x) = x2 + x+ 7 and p = 3,
it is clear that 1 is the unique root of f(x) ≡ 0 (mod p) in the domain {0, 1 , 2}. While,
there are three roots for f(x) ≡ 0 (mod p2), i.e., 1, 4 and 7 from the domain {0, . . . , 8}.
It appears that for different powers of p, a polynomial may have different roots. This
motivates Bob to work on how to find the roots of polynomials.

Formally, Bob is interested in the single-variable polynomial f(x) modulo pℓ, where p is
a prime number, ℓ is a positive integer, and all the coefficients are non-negative integers.
He wants to find all possible a ∈ Zpℓ := {0, 1, . . . , pℓ − 1} such that f(a) is a multiple of
pℓ, i.e., f(a) ≡ 0 (mod pℓ).

Bob finds a way to extend a root a ∈ Zpj , satisfying f(a) ≡ 0 (mod pj), to higher prime
power with the following property:

f(a+ tpj) ≡ f(a) + f ′(a)tpj (mod pj+1),

for any non-negative integer t, where f ′ is the derivative of f . Further, Bob observes that
f(a+ tpj) ≡ 0 (mod pj+1) if and only if f(a) + f ′(a)tpj ≡ 0 (mod pj+1), which implies

f(a)

pj
+ f ′(a)t ≡ 0 (mod p).

Based on the above, we can determine whether a can be extended to root(s) of higher
power or not, by finding possible t that satisfies the above congruent equation. That is,
for any t satisfying the above congruent equation, a+tpj is a root of f(x) ≡ 0 (mod pj+1).
Note that, for any polynomial q(x), if q(a) ≡ 0 (mod pℓ), then q(a) ≡ 0 (mod pℓ−1), but
the other direction may not be true.

Your task is to write an efficient program to help Bob find all the possible distinct roots
of an integral polynomial modulo some prime power, where all the coefficients are non-
negative. If there is no root, then simply output -1.

25

Input File Format

The first line in the input file has a positive integer T (≤ 10), which indicates there are T
test cases. Then, for each case, the first line has two positive integers, p (< 10, 000) and
ℓ (< 40) with pℓ < 264, which indicates, respectively, a prime number and the power. In
the following line, there is a sequence of non-negative integers: d, cd, · · · , c1, c0 indicating
a degree d (0 < d < 600) polynomial, i.e., cdx

d + · · · + c1x + c0, where cd ̸= 0 and
0 ≤ ci < 1012. All the input is guaranteed to have no more than 1000 distinct roots.

Output Format

For each test case, print, in a line, the roots of the corresponding polynomial under the
prime power in increasing order. All the roots should be in Zpℓ , for the corresponding
p and ℓ. If the polynomial does not have root in Zpℓ , then output -1.

Sample Input

4

2 4

1 1 4

3 4

2 1 1 23

3 7

3 1 2 1 6

7 3

2 1 1 47

Output for the Sample Input

12

-1

840

99 243

26

Solution

Mathematical Model of the Problem

Given a degree d polynomial f(x) =
d∑

i=0

cix
i and a prime power pℓ, find the roots of

f(x) ≡ 0 (mod pℓ) in Zpℓ .

Algorithm and Time Complexity of the Problem

We can start by exhaustively searching the root(s) for f(x) ≡ 0 (mod p) with O(dp)
time. Then we can lift the roots to higher power when possible. This can be done in
O(dp+ ℓM(d+ p)) time, where M is the maximum number of root under a modulo.

Let a ∈ Zpj satisfy f(a) ≡ 0 (mod pj). We want to extend a to a + t · pj such that
f(a+ tpj) ≡ 0 (mod pj+1). By Taylor’s expansion we can express

f(a+ tpj) = f(a) + f ′(a)tpj + f ′′(a)t2p2j/2! + · · · .

Thus,
f(a+ tpj) ≡ f(a) + f ′(a)tpj (mod pj+1).

Note f(a+ tpj) ≡ 0 (mod pj+1) iff f(a) + f ′(a)tpj ≡ 0 (mod pj+1). So

f(a)

pj
+ f ′(a)t ≡ 0 (mod p).

Then we can determine if there exists t satisfying the above congruent equation. Consider
the following cases:

1. Case f ′(a) ̸≡ 0 (mod p): Apply the extended-gcd algorithm to find the inverse
of f ′(a) and then a can be extended to a + tpj as a root of f modulo pj+1 with

t = −f(a)

pj
(f ′(a))−1.

2. Case f ′(a) ≡ 0 (mod p): We have f(a + tpj) ≡ f(a) (mod pj+1). Now there are
2 subcases: (1) if f(a) ≡ 0 (mod pj+1), then f(a + tpj) ≡ 0 (mod pj+1), t =
0, 1, · · · , p− 1, i.e., a can be extended to p roots of f modulo pj+1. (2) if f(a) ̸≡ 0
(mod pj+1), then a cannot be extended to a+ tpj as a root of f modulo pj+1.

Based on the above and the assumption p < 10000, we can start by searching all the
root(s) of f(x) ≡ 0 (mod p). Then extend the root(s) inductively on the power.

27

28

Problem H
Hidden Tree Reconstruction

Number of Test Cases: 1
Excution Time Limit: 1 second

Alice has an edge-weighted rooted tree T = (V,E) where each edge e ∈ E is associated
with a positive weight we ∈ R>0. Alice told Bob that the tree she possesses has two very
special properties that

1. The distances between the root vertex r and any leaf node are the same, i.e.,

dT (u, r) = dT (v, r)

for any two leaf nodes u, v in T , and

2. The degree of the root node is at least 2. For any non-root internal node, the degree
is at least 3.

“I will tell you more information about the tree,” said Alice, who then wrote down the
distances between some pairs of leaf nodes in the tree.

“As a computer scientist, ” Alice continued,
“I will go out a date with you, if you can find out the secret tree I have.”

......

Please write a program to help Bob find out the secret tree.

Input File Format

The first line of the input contains two integers n and m, where n is the number of leaf
nodes in Alice’s tree and m is the number of clues (the pairwise distances) Alice has
written. Then there are m lines, where the i-th line contains three integers ui, vi, and ℓi
specifying that the distance between leaf ui and leaf vi in the tree is ℓi.

You may assume that

� 2 ≤ n ≤ 105 and 1 ≤ m ≤ 105.

� The leaf nodes are indexed between 1 and n.

� 1 ≤ ui, vi ≤ n and ui ̸= vi for all 1 ≤ i ≤ m.

� 2 ≤ ℓi ≤ 109 is always an even number for all 1 ≤ i ≤ m.

29

Output Format

If a tree satisfying Alice’s description is found, then print out its structure in the following
format. In the first line print two integers k and r, the total number of nodes in the tree
and the index of the root vertex. In each of the next k − 1 lines, print three integers xi,
yi, and wi, indicating that there is an edge between xi and yi with weight wi in the tree.

Note that, your output for this case must follow the following guidelines.

� Use the same indexes for the leaf nodes as used in Alice’s description.

� Label all nodes with indexes between 1 and k.

� The distance between any pair of leaf nodes is at most 109.

As there may be multiple number of trees satisfying Alice’s criteria, she will honestly
accept the answer as long as the tree you output meets all of the conditions she has
described. This says, if there are multiple answers, you may print any of them.

If there exists no tree satisfying Alice’s description, then print the string

“Sorry, buddy. She’s not into you.”

in a line. Note that there are 5 spaces in the above sentence in total, one after each
punctuation and each word, except for the last period.

Sample Input 1

3 3

1 2 10

2 3 18

1 3 18

Sample Output 1

5 5

1 4 5

2 4 5

4 5 4

3 5 9

Sample Input 2

3 3

1 2 2

1 3 4

2 3 6

Sample Output 2

Sorry, buddy. She’s not into you.

30

Solution

Mathematical Model of the Problem

Given a partial distance metric d, determine if there exists an ultrametric T that is
consistent with d.

Algorithm and Time Complexity of the Problem

Sort the distances specified in d in non-descending order. Consider the distances one
by one and construct the ultrametric accordingly. Report “-1” if inconsistency is found
during the process.

31

32

Problem I
Candies

Number of Test Cases: 40
Excution Time Limit: 5 seconds

In a kindergarten with n children, a teacher has a total of m candies. The teacher wishes
to give the k-th child at most f(n, k) candies, where f(n, k) = max{d | d×α = k, d×β =
n for some α, β, d ∈ Z}. The candies are distributed starting from the first child, giving
as many as possible, then moving on to the the second child, and so on. It is possible that
not all the children will receive candies. The task is to determine how many children, in
total, will receive candies?

For example, if there are 4(= n) children and the teacher wants to give them at most
1, 2, 1, and 4 candies respectively (note that f(4, 1) = 1, f(4, 2) = 2, f(4, 3) = 1, and
f(4, 4) = 4), then:

1. If the teacher only has 2(= m) candies, the four children will receive 1, 1, 0, and 0
candies respectively, so only 2 children will receive candies.

2. If the teacher has 6 candies, the four children will receive 1, 2, 1, and 2 candies
respectively, so all 4 children will receive candies.

3. If the teacher has 9 candies, the four children will receive 1, 2, 1, and 4 candies
respectively, so all 4 children will receive candies, with one candy remaining.

Input File Format

The first line is the number of test cases T with T ≤ 40. Each test case has two positive
integers n and m given in one line. You can assume that 1 ≤ n ≤ 20241006123000 and
0 ≤ m < 263.

Output Format

For each test case, please print the number of children who will receive candies in a single
line.

Sample Input

10

4 0

4 1

4 2

33

4 3

4 4

4 5

4 6

4 7

4 8

4 9

Output for the Sample Input

0

1

2

2

3

4

4

4

4

4

34

Solution

Mathematical Model of the Problem

Ground Truth: gcd(a,b)

a,b 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1 1
2 1 2
3 1 1 3
4 1 2 1 4
5 1 1 1 1 5
6 1 2 3 2 1 6
7 1 1 1 1 1 1 7
8 1 2 1 4 1 2 1 8
9 1 1 3 1 1 3 1 1 9
10 1 2 1 2 5 2 1 2 1 10
11 1 1 1 1 1 1 1 1 1 1 11
12 1 2 3 4 1 6 1 4 3 2 1 12
13 1 1 1 1 1 1 1 1 1 1 1 1 13
14 1 2 1 2 1 2 7 2 1 2 1 2 1 14
15 1 1 3 1 5 3 1 1 3 5 1 3 1 1 15
16 1 2 1 4 1 2 1 8 1 2 1 4 1 2 1 16
17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 17
18 1 2 3 2 1 6 1 2 9 2 1 6 1 2 3 2 1 18
19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 19
20 1 2 1 4 5 2 1 4 1 10 1 4 1 2 5 4 1 2 1 20
21 1 1 3 1 1 3 7 1 3 1 1 3 1 7 3 1 1 3 1 1 21
22 1 2 1 2 1 2 1 2 1 2 11 2 1 2 1 2 1 2 1 2 1 22
23 1 23
24 1 2 3 4 1 6 1 8 3 2 1 12 1 2 3 8 1 6 1 4 3 2 1 24
25 1 1 1 1 5 1 1 1 1 5 1 1 1 1 5 1 1 1 1 5 1 1 1 1 25
26 1 2 1 2 1 2 1 2 1 2 1 2 13 2 1 2 1 2 1 2 1 2 1 2 1 26
27 1 1 3 1 1 3 1 1 9 1 1 3 1 1 3 1 1 9 1 1 3 1 1 3 1 1 27
28 1 2 1 4 1 2 7 4 1 2 1 4 1 14 1 4 1 2 1 4 7 2 1 4 1 2 1 28
29 1 29
30 1 2 3 2 5 6 1 2 3 10 1 6 1 2 15 2 1 6 1 10 3 2 1 6 5 2 3 2 1 30

Definition 1:
Let f(n, u) and ϕ(n, u) be defined as follows.

f(n, u) =
u∑

k=1

gcd(k, n)

ϕ(n, u) = |{k | k ∈ Z, 1 ≤ k ≤ u, gcd(k, n) = 1}|
We also let f(n) = f(n, n) and ϕ(n) = ϕ(n, n).

Ground Truth 2:

n 1 2 3 4 5 6 7 8 9 10
f(n) 1 3 5 8 9 15 13 20 21 27
ϕ(n) 1 1 2 2 4 2 6 4 6 4

n 11 12 13 14 15 16 17 18 19 20
f(n) 21 40 25 39 45 48 33 63 37 72
ϕ(n) 10 4 12 6 8 8 16 6 18 8

n 21 22 23 24 25 26 27 28 29 30
f(n) 65 63 45 100 65 75 81 104 57 135
ϕ(n) 12 10 22 8 20 12 18 12 28 8

Theorem 3:

The function f is bounded as max(2 − 1

n
, (
3

2
)ω(n)) ≤ f(n)

n
≤ 27 × (

log(n)

ω(n)
)ω(n), where

n ∈ N and ω(n) is the number of distinct prime numbers dividing n.
(in https://cs.uwaterloo.ca/journals/JIS/VOL4/BROUGHAN/gcdsum.pdf)

Theorem 4:
f(pα) = (α + 1)pα − αpα−1 for a prime p and α ≥ 1.
(in https://cs.uwaterloo.ca/journals/JIS/VOL4/BROUGHAN/gcdsum.pdf)

35

Corollary 5:
If n = pα for a prime p and α ≥ 1, we have f(n) ≤ (α + 1)n.

Corollary 6:
If ω(n) = 1, we have f(n) ≤ (log2(n) + 2)n.

Result 7:
Consider 2 ≤ n ≤ 20241006123000 with ω(n) ≥ 2. We have 0 ≤ log(n) ≤ 45. Since
2×3×5×7×11×13×17×19×23×29×31×37 = 7420738134810 < 20241006123000 <
304250263527210 = 2× 3× 5× 7× 11× 13× 17× 19× 23× 29× 31× 37× 41, we have
ω(n) ≤ 12. So, we have

f(n) ≤ 27× (
log(n)

ω(n)
)ω(n) ≤ 27× (

45

2
)12 = 4.5...× 1017 < 257

Lemma 8:
Let a, b, and c be positive integers. We have gcd(a× c, b× c) = c× gcd(a, b)

Theorem 9:
Given n, decompose n = pn1

1 × pn2
2 × pn3

3 · · · pnr
r with primes pk. Let S = {p1, p2, p3, ...pr}.

We can find that
f(n) = ϕ(n) +

∑
A⊂S

{(−1)|A|+1 × C × f(n/C) | C =
∏
p∈A

p}

For n = 8 = 23, we have S = {2}.
f(8) = 1 + 2 + 1 + 4 + 1 + 2 + 1 + 8 = 20
f(8) = (1 + 1 + 1 + 1) + (2 + 4 + 2 + 8)
= ϕ(8) + 2× (1 + 2 + 1 + 4)
= ϕ(8) + 2× f(4)

For n = 6 = 2× 3, we have S = {2, 3}.
f(6) = 1 + 2 + 3 + 2 + 1 + 6 = 15
f(6) = (1 + 1) + (2 + 2 + 6) + (3 + 6)− (6)
= ϕ(6) + 2× (1 + 1 + 3) + 3× (1 + 2)− 6× (1)
= ϕ(6) + 2× f(3) + 3× f(2)− 6× f(1)

For n = 12 = 22 × 3, we have S = {2, 3}.
f(12) = 1 + 2 + 3 + 4 + 1 + 6 + 1 + 4 + 3 + 2 + 1 + 12 = 40
f(12) = (1 + 1 + 1 + 1) + (2 + 4 + 6 + 4 + 2 + 12) + (3 + 6 + 3 + 12)− (6 + 12)
= ϕ(12) + 2× (1 + 2 + 3 + 2 + 1 + 6) + 3× (1 + 2 + 1 + 4)− 6× (1 + 2)
= ϕ(12) + 2× f(6) + 3× f(4)− 6× f(2)

Theorem 10:
Given n and u, we decompose n = pn1

1 × pn2
2 × pn3

3 · · · pnr
r with primes pk. Let S =

{p1, p2, p3, ...pr}. We can find that

f(n, u) = u+
∑
A⊂S

{(−1)|A| × u/C | C =
∏
p∈A

p}

+
∑
A⊂S

{(−1)|A|+1 × C × f(n/C, u/C) | C =
∏
p∈A

p}

We assume that a//b is the quotient of a divided by b.

36

For n = 6 = 2× 3 and u = 5, we have S = {2, 3}.
f(n, u) = f(6, 5) = 1 + 2 + 3 + 2 + 1 = 9
= (1 + 1) + (2 + 2) + (3)− (0)
= ϕ(6, 5) + 2× f(3, 2) + 3× f(2, 1)− 6× f(1, 0)
= ϕ(6, 5) + 2× f(6/2, 5//2) + 3× f(6/3, 5//3)− 6× f(6/6, 5//6)

For n = 18 = 2× 32 and u = 13, we have S = {2, 3}.
f(n, u) = f(18, 13) = 1 + 2 + 3 + 2 + 1 + 6 + 1 + 2 + 9 + 2 + 1 + 6 + 1
= (1 + 1 + 1 + 1 + 1) + (2 + 2 + 6 + 2 + 2 + 6) + (3 + 6 + 9 + 6)− (6 + 6)
= ϕ(18, 13) + 2× (1 + 1 + 3 + 1 + 1 + 3) + 3× (1 + 2 + 3 + 2)− 6× (1 + 1)
= 13− 13//2− 13//3 + 13//6
+ 2× f(18/2, 13//2) + 3× f(18/3, 13//3)− 6× f(18/6, 13//6).

So, we can solve this problem by following techniques.

1. Sieve of Eratosthenes. (O(
√
n))

2. Dynamic programming.

3. Principle of inclusion-exclusion. (O(2r)) (O(2ω(n)))

4. Binary search on u. (O(log(n)))

37

38

Problem J
Big Difference

Number of Test Cases: 14
Excution Time Limit: 1 second

In the NCPC park, there are n sightseeing spots and m lanes, with each of which con-
necting two of the n spots. The m lanes are not always accessible because they have
to be maintained from time to time. Today, there are two groups of visitors. For each
group, the owner of the park makes exactly n−1 lanes accessible to ensure that there is a
path between any two spots; namely, the n− 1 lanes form a tree structure connecting the
n spots. The owner would like to make the two tree structures as different as possible.
Given the tree structure T1 for the first group, please help the owner find a tree structure
T2 for the second group so that the lanes used in T2 but not in T1 are as many as possible.

Precisely, the park can be seen as a connected undirected simple graph, say G, and T1

is a given spanning tree of G. Your task is to find another spanning tree T2 so that
|E(T2)− E(T1)| is as large as possible, where E(X) denotes the edge set of graph X.

Please compute |E(T2)− E(T1)|. Notice that T1 and T2 can be identical.

Input File Format

The first line is an integer t, indicating the number of test cases. For each test case, the
first line contains two integers n and m (2 ≤ n ≤ 1000, 1 ≤ m ≤ 260, 000), which are the
numbers of vertices and edges of G, respectively. The vertices are numbered from 0 to
n− 1. Each of the following m lines contains two integers, indicating the endpoints of an
edge, and the first n− 1 of the m lines specify the edges of the spanning tree T1.

Output Format

For each test case, print an integer, which is |E(T2)− E(T1)|.

Sample Input

2

2 1

0 1

4 5

0 1

1 2

3 1

39

2 3

3 0

Output for the Sample Input

0

2

40

Solution

Algorithm and Time Complexity of the Problem

For the edges in E(T1), let each of them be weighted by 2. For the remaining edges of
G, set the weights to be 1. Then find a minimum spanning tree T ′ of the edge weighted
graph. T ′ is the spanning tree which share the least number of edges in common with T .
Let the sum of weights of the edges of T ′ be W . Then 2(n− 1)−W is the answer.

41

42

Problem K
Magic Stone Knights
Number of Test Cases: 2

Excution Time Limit: 2 seconds

Far away from the mountains, where the sky and the sea meet, lies the Kingdom of
Eldoria. This prosperous realm is known for its lush forests, sparkling rivers, and, most
notably, its knights. The knights are equipped with an array of finely crafted weapons
made of magic stones, each designed for specific purposes in battle. Each weapon has its
own sequence of stones. When untouched, they are linearly arranged on the wall. But
when a knight approaches, the stones will recognize the presence of its master. Upon
the knight’s touch, the stones will begin to fold into the weapons. The stones can be
folded from head to tail by the sequence (mathematical formulation). For a sword, the
stones would fold into a blade (Figure 1(a)). For a polearm, the stones would nest within
one another, expanding and lengthening, forming a lethal blade of the weapon (Figure
1(b)). Note that cross-pairing is not allowed (Figure 1(c)). i.e., given a sequence of stones
S = [s1, s2, . . . , sn], if si is paired with sj, no stones between i and j can be paired with
those outside the range [i+ 1, j − 1].

A
B
C
D

A
A
B
B

C
G

F

GCDBBAAFAABBECG

D E
A
B

CCD

D CC
E E F

G
F
G

A
B

A
A

D
B

A
A

D
B

F

Sword Polearm

HDBAAABCCDDEECCFGFGFBAAABD

A
A
B
B

C
G

D
C
B
A

DCBADCBA
(a) (b) (c)

H

Figure 1: (a) the magic stones folded into a sword of 46 units of power; (b) the magic
stones folded into a polearm of 94 units of power; (c) no cross-pairing is allowed.

The strength of a knight’s weapon is not merely in its sharpness or size, but in the magic
power when these stones fold together. The magic power of each weapon depends on the
folding structure of the underlying stones. Assume each stone weapon is represented by
a linear chain of alphabetic symbols (A-Z). When the stones are folded into their final
shape, they sought to align perfectly, matching symbol to symbol from head and tail.
The matching, and mismatching, and hanging stones in the folded structure will obtain
magic power of +8, -1, and -1 units, respectively. For instance, the sword in Figure 1(a)
obtains a total magic power of 6*(+8)-1-1=46, due to 6 pairs of matching stones (e.g., A

43

to A, B to B), one mismatching pair (i.e., D to E), and one hanging stone without any
matched/unmatched stone (i.e., F). The polearm (Figure 1(b)) has 12 pairs of matching
stones aligned perfectly and two hanging stones, thereby creating a weapon of strength of
12*(+8)+2*(-1))=94 power units. Every sequence of magic stones folds into the weapon
of maximum magic power.

However, these powerful weapons become the envy of enemies who sought to seize them
for their own dark purposes. To protect these weapons, the knights decide to encrypt all
the weapons into a long, linear chain of rearranged stones. At first, the stones of each
weapon (e.g., ABA) is appended by a special stone, marked by the ancient symbol of
the number sign (e.g., ABA#). Then, the chain of stones of each weapon is circularly
rotated, where each rotation shifts the stones and creates new patterns. For example,
given two stone weapons (e.g., ABA# and BCACB#), ten circular rotations, ABA#,
BA#A, A#AB, #ABA, BCACB#, CACB#B, ACB#BC, CB#BCA, B#BCAC, and
#BCACB will be generated. Next, these patterns are sorted in lexicographical order (i.e.,
#ABA, #BCACB, A#AB, ABA#, ACB#BC, B#BCAC, BA#A, BCACB#, CACB#B,
CB#BCA). Finally, only the last stones in the sorted patterns (i.e., ABB#CCA#BA)
are stored as a linear chain in the armory. Therefore, their enemies cannot easily know
what weapons are stored in the armory.

The armory is guarded by a sentinel, watching over the kingdom’s most treasured weapons.
For a knight to reclaim his weapon, he must correctly speak the sequence of the weapon
stones (e.g., ABA) to the guardian. If the weapon exists, these stones will fold into the
weapon with maximum magic power. The guardian will hand over the folded weapon to
the knight and tell him the maximum magic power of this weapon (e.g., 7 for ABA). On
the other hand, if a thief wants to steal the weapon and spells a false sequence of stones
not existed in the armory (e.g., ABC), the guardian will tell a thief might be coming
and not giving any weapon to him. Note that this armory not only hides the weapons
from their enemies but also allows a more compact storage of weapons. When a knight is
seeking for a smaller weapon (e.g., CAC), which is a part (a subsequence of consecutive
stones) of a larger one (e.g., BCACB), the guardian would retrieve it with ease.

Given a chain of encrypted stones in the armory, and a stone sequence spelled by a knight
or thief, you are asked to write a program which computes the maximum power of the
weapon (if existed). Otherwise, if the weapon is non-existed, you should output “Thief”
instead.

Input File Format

The first line contains the number of test cases. Each test case starts with a line containing
the encrypted stone sequences of all weapons in the armory. The next line is the number
of query stone strings N , N ≤ 10. Each of the following N lines stores one query stone
string from the knight or thief. The specification of each variable is given below.

1. The number of stones of all weapons in the armory ranges from 1 to 2500000.

2. The number of stones of each weapon ranges from 1 to 400

44

3. The stones of each weapon is from standard alphabet A, B, C, . . . , Z.

4. The stones of each weapon is always appended with a number sign ‘#’ when en-
cripted in the armory.

5. Given a sequence of stones S = [s1, s2, . . . , sn], a stone si can be paired with any
stone sj (either match or mismatch) where j > i or hang alone without pairing to
any other stone. If si is paired with sj, no stone between i and j can be paired with
those outside the range [i+ 1, j − 1] (i.e., no crossing pairs).

6. Each pair of matched stones obtains +8 units of magic power.

7. Each pair of mismatched stones obtains -1 units of magic power.

8. Each hanging-alone stone obtains -1 unit of magic power.

Output Format

For each query stone string within each test case, output the maximum magic power of
the weapon if it exists. If it does not exist, your program should print ”Thief” in one line.

Sample Input

2

ABB#CCA#BA

3

ABA

BCACB

ABC

AGDBBBFAABAAABACDFBCDAAABDDBEGCCEBHCA#CDEBDAGGCC#FF#

3

GCDBBAAFAABBECG

HDBAAABCCDDEECCFGFGFBAAABD

DCBADCBA

Output for the Sample Input

7

15

Thief

46

94

4

45

Solution

Mathematical Model of the Problem

This problem is composed of two subproblems. The first subproblem checks whether the
query string is a substring of any weapon string in the armory, which are encoded by
Burrows-Wheeler Transform (BWT). The first subproblem can be solved by using FM-
index. Two tables, C[c] and Occ[c,i] will be first constructed. C[c] is a table that, for
each character c, contains the number of occurrences of lexically smaller characters in the
encoded string. The function Occ(c, k) is the number of occurrences of character c in the
prefix of encoded string [1..k]. Subsequently, the existence of each query string can be
known by computing the BWT interval [First, Last] via the backward-search algorithm
shown below. If it exists, the frequency of each query string is the size of the BWT
interval, that is, Last−First+1. Otherwise, if it does not exist, last will be less than First
during the backward search.

Backward search algorithm(P [1, p])
(1) i← p, c← P [p], F irst← C[c] + 1, Last← C[c+ 1];
(2) while (First ≤ Last) and (i ≥ 2) do
(3) c← P [i− 1];
(4) First← C[c] + Occ(c, F irst− 1) + 1;
(5) Last← C[c] + Occ(c, Last);
(6) i← i− 1;
(7) if (Last < First)return “Thief”

else return ⟨Last− First+ 1⟩.

If the weapon exists (i.e., Last−First+1 > 0), the second subproblem aims to compute
the maximum power of all possible folding structure, which can be solved by a dynamic
programming on the substrings of the query string. Let S[i, j] be the maximum power
by aligning i-th stone to the j-th one. Let s be the power obtained by aligning the i-th
and j-th stones, where s = +8 if both stones are the same (match) and -1 otherwise
(mismatch or hanging).

S[i, j] = max

S[i+ 1, j − 1] + s,
S[i+ 1, j]− 1,
S[i, j − 1]− 1,
max
i<k<j

S[i, k] + S[k + 1, j]

The construction of C[c] and Occ[c,k] takes O(nZ) time, where n is the length of BWT
string and Z is the size of alphabet. The backward search takes O(m) time, where m is
the length of the query string. The dynamic programming of computing the maximum
power takes O(m3) time. Therefore, the overall complexity is O(nZ +m3).

46

Problem L
Placing Rooks

Number of Test Cases: 1
Excution Time Limit: 1 second

You are given an n by n grid, where each cell at the intersection of the i-th row and j-th
column is called the (i, j)-cell. For each (i, j)-cell, if i equals j, then it is a diagonal cell.
Otherwise, we call it non-diagonal cell. Each non-diagonal cell is assigned one of three
possible colors: white, blue, or green.

You are allowed to perform a sequence of swap operations on the grid. A swap operation
proceeds as follows. Pick an index k in {1, 2, . . . , n − 1}. For each i /∈ {k, k + 1}, swap
the (i, k)-cell and the (i, k + 1)-cell, and also swap the (k, i)-cell and the (k + 1, i)-cell.
Finally, swap the (k, k+ 1)-cell and the (k+ 1, k)-cell. The illustration below depicts the
swap operation for n = 6 and k = 3.

Figure 1: An illustration of the swap operation for n = 6 and k = 3.

We consider to perform a sequence of the swap operations on the grid such that the
following two conditions simultaneously hold.

� Each non-diagonal cell that is not colored white must be positioned above a diagonal
cell. In other words, all such non-diagonal cells must be placed in the upper-right
triangle of the grid.

� There exists a way to place n − 1 rooks, each on one of the n − 1 selected non-
diagonal cells (none of which are colored white) such that no two rooks can attack
each other, and the number of rooks on blue cells is even. Formally, two rooks can
attack each other if they are placed on the same row or the same column.

If such a sequence of swap operations exists, output ”Yes.” Otherwise, we need to count
how many ways a single non-diagonal cell with any color can be colored blue such that
the sequence exists. The output in this case will be an integer in the range [0, n(n− 1)].

47

Input File Format

Each test case is in a file. Each test case begins with two positive integer n andm (n ≤ 106

and m ≤ 106), indicating that the input is an n by n grid and m non-diagonal cells on
the grid are not colored white. Then m triples of integers follow. Each of the m ordered
triples (x, y, c) indicates that the (x, y)-cell is colored c where c = 0 for blue and c = 1 for
green. Clearly, x and y both are integers in {1, 2, . . . , n}.

Output Format

For each test case, output “Yes” on a line if the input is a former case. Otherwise, output
ω on a line where ω denotes the number of ways a single non-diagonal cell with any color
can be colored blue such that the desired sequence of swap operations exists.

Sample Input

Shown below are 3 test cases separated by blank lines.

3 2

1 2 1 2 3 1

3 2

1 3 0 2 3 1

6 6

5 1 0 5 2 1 1 2 1 6 4 0 6 3 1 4 3 0

Output for the Sample Input

Shown below are outputs for the test cases separated by blank lines.

Yes

1

2

48

Solution

Dynamic Programming on DAGs. See details below.

Mathematical Model of the Problem

This problem is a restatement of the problem that, given a DAG G (the n by n grid is the
adjacency matrix of the DAG), count how many ways to add a blue edge to G or replace
a green edge of G with color blue such that G contains a hamiltonian path with an even
number of blue edges.

Algorithm and Time Complexity of the Problem

Once you find the above restatement. The solution is to implement a DP on a DAG,
followed by O(|V |) queries on the DP table. That is, you need to find a simple sx-path
and yt-path for some x, y, source node s, and sink node t. Our goal is to join x and y with
a directed edge such that there exists no yx-paths. This can be done in O(|V |+ |E|) time.
This DP approach is not hard to find, but there is a more direct (but runtime-consuming)
DP may trap the contestants for a while.

49

50

Problem M
Problem: H-index Calculation

Number of Test Cases: 20
Excution Time Limit: 3 seconds

In the fast-paced world of computer science research, impact is everything. With a con-
stant flow of papers being published, how do we measure a scientist’s contribution to
the field? A balanced metric has emerged to capture both productivity and influence:
H-index.
The H-index is a measure used to quantify the impact and productivity of a scientist
based on their published papers.

Problem Description

The H-index is defined as the largest integer i such that the scientist has published i
papers, in which each paper is cited at least i times.

Given the citation counts of papers for several scientists, your task is to calculate the
H-index for each scientist based on their citation counts.

Input Format

The first line of input contains an integer N representing the number of scientists.

For each of the next N lines:

� The first integer M represents the number of papers published by the scientist.

� The next M integers represent the citation counts for each paper.

� For each line, consecutive two integers are separated by a space.

Output Format

The program should output N lines. For each scientist, print their H-index on a new line.
If N = 0, please output the integer 0.

51

Constraints

� 0 ≤ N ≤ 500

� 0 ≤M ≤ 105

� 0 ≤ Citation Count ≤ 105

Sample Input 1

2

5 3 0 6 1 5

3 4 4 0

Sample Output 1

3

2

Sample Input 2

0

Sample Output 2

0

52

Solution

The Algorithm and the Time Complexity of the problem

First, sorting the M papers in descending order based on their citation counts. Then, use
binary search to efficiently find the largest index where the citation count is more than or
equal to the current index (1-based). The value of this index represents the H-index. The
time complexity mainly depends on the sorting and searching, which could be O(nlogn).

Sample Explanation

In the first case, the first scientist has 5 papers with citation counts [3, 0, 6, 1, 5]. After
sorting the citation counts in descending order [6, 5, 3, 1, 0], we see that the largest H
such that at least H papers have been cited H times is 3.

In the second case, the second scientist has 3 papers with citation counts [4, 4, 0]. Sorting
the counts gives [4, 4, 0], and the largest H such that at least H papers have been cited
H times is 2.

53

