2004 National Collegiate Programming Contest

e Problems: There are 8 problems (18 pages in all, not count-
ing this cover page) in this packet.

e Problem Input: Input to the problem are done through the
input files. Input filenames are given in the table below.
The input file may contain one or more test cases. Test
cases may be separated by any delimiter as specified in the
problem statement.

e Problem Output: All output should be directed to standard
output (screen output).

e Time Limit: The judges will run each submitted program
with certain time limit (given in the table below).

Table 1: Problem Information Sheet

Problem Name Input File Time Limit
Problem A Three in a Row pa.in 10 secs.
Problem B GO pb.in 10 secs.
Problem C Throwing a Party pc.in 10 secs.
Problem D Leaf Comparison pd.in 10 secs.
Problem E Red and White pe.in 10 secs.
Problem F Polygon Covering pf.in 10 secs.
Problem G Subset Selection pg.in 10 secs.
Problem H Continued Fractions ph.in 10 secs.

Problem A
Three-In-a-Row
Input File: pa.in

This game is called Three-In-a-Row (TIR). A game board with 4x4 tiles is
shown below.

wi(p, D E,
FJF A, :
A, B,JAJF,
F

CF Ay C, &

Figure 1: The TIR game board.

E
D

7

[

In the game board, there is a cat and a mouse (not necessarily placed in
the corners). They are blocked by tiles. Each tile has an English letter on it.
The rules of the game are as follows:

e If there are more than 3 (including 3) same tiles in a row (horizontal or
vertical, not diagonal), they are destroyed immediately (i.e., removed
from the game board). In Fig. 2, those tile patterns all satisfy this rule
and are removed immediately.

e After no more tiles can be destroyed, a player can switch any two neigh-
boring tiles to see if he/she can destroy any tiles which satisfy the 3-in-a-
row rule. However, if no tiles can be destroyed, the switch is invalid. For
example, in Fig. 1 you can not switch tile ; and Ag because switching
the two tiles does not destroy any tiles. However, switching By and A3
is valid because it can destroy Asg, A13, Aip which becomes 3-in-a-row.

e Goal of the game: to create a path between the cat and mouse to help
the cat catch the mouse.

0

n
] B3

Figure 2: Some tile patterns which satisfy 3-in-a-row rule.

===

Let’s look at a solution to create a path for Fig. 1. By switching F3 and
D7, we can dig a path as in Fig. 3 (a). Next, by switching A3 and Cy4, we
can complete the path as in Fig. 3(b). On the other hand, from Fig. 3(a),
if you mistakenly switch A;3 and By first, you enter a state with no further
feasible steps to go on. Therefore, you fail to help the cat catch the mouse.

rw\ w\
L LEE

F, Al C @

(a) (b)

T
T
>

&
$.

QJE;

Figure 3: Digging a path from cat to mouse.

Given a TIR game, please write a program to answer if a game can allow
the cat to catch the mouse.

Input File Format

The test file begins with a number N — the number of test cases. Each
test case begins with two numbers (L L) to define the size of the game board,
where 2 j= L j= 20. After (L L) is the data of tiles. “*” represents the cat.
“@” represents the mouse. The other tiles are listed by capital English letters,

as in sample input.

Output Format
For each test case, please print “yes” if the game allows the cat to catch

the mouse. Please print “no” if otherwise.

Sample Input

2

474"
{*}DDE
FFAD
ABAF
FACQ
474"
{*}AAC
DEFA
HIJC
@MNC

Output for the Sample Input

yes
no

Problem B
GO
Input File: pb.in

GO is a well-known Chinese game. It is hard to play well. However, its
rule is very simple. Consider the 5x5 game board below.

P2y
e

£ G

0 -

In the figure, there are three black stones placed on the game board. Stone
A is placed in the middle of game board. It has 4 airs to breath. They are
a,b,c, and e. Stone B, on the other hand, is placed along the edge of the game
board. It has 3 airs to breath, which are e,d,f. Stone C is placed on the corner
of the game board. It has 2 airs to breath, which are f and g.

To kill a stone in GO, you need to close the air of a stone. Consider the
board below

.
w’ﬂ "
0

Black stone A is killed and removed from the board when white stone B is
placed to close the last air of black stone A.

To kill a group of connected (connected in four directions) stones. Same
rule applies. For example, in the game board below, the black stones have two
airs, ¢ and b. On the other hand, the white stones have 7 airs. So, the black
stones are dead. White player can place a stone in b to close one air of black
stones. Of course, black player can place a black stone at a to remove the
white stone. However, white player can put another white stone at b again to
close the last air of black stones and remove them all. The rule of GO is that
you can put a stone in any place which has airs to breath. Or, if it has no
airs to breath, the move can kill the opposite stones to create airs. Otherwise,
putting a stone into a place which has no airs to breath is illegal.

i);(‘\J :_(—

So, in simple cases, determining the death or liveness of two groups of
stones can be simply to compare the airs of each side. Ones with more airs
kill the ones with less airs. If the number of airs is the same for both players,
who has the next move wins. This simple rule, however, has some exceptions.
One exception is shown below.

In this game, both black and white have 3 airs, a, b, and ¢ but these airs
are shared by both sides. In this case, the game is even. Any player attempts
to make a move to kill the opposite kills himself. This is a situation called
double living. No matter which player has the next move, no players win. On
the other hand, if one player has one more free air, he wins. For example, in
the following game, white wins. If both have same free airs and shared airs,
you can conclude that the game is double living.

I

|

In this problem, your job is to write a program to determine which player
in a 5x5 game wins according to the rules and the exception described
above.

Note A: If you are familiar with GO, you do not need to consider other
complicated exceptions in real GO game, such as double eyes. The test cases
shall not test your program with cases which can not be determined by the
rules described above. The death and liveness problem in real GO game is too
complicated to deal with. Do not make this problem complicated if you are a
real GO player.

Note B: You can assume the stones of a color are connected. That is, we
will not test you with cases which contains two or more groups of disconnected
black stones (or white stones). There is only one group of connected black
stones and one group of connected white stones in test cases.

Input File Format

The input file begins with a number N - the number of test cases. In each
test case, there are 5x5 characters to represent the game board as in sample
input. A character can be “.”, “B”, or “W”, where “B” and “W” are capital
letters. “.” represents no stones in the position. “B” represents a black stone
and “W” represents a white stone. There is no space between letters. Letters
are 5 in a row. After the data of 5x5 game board, a letter “B” or “W” is given
to tell which player has the next move. Finally, behind the letter, “@Q” is given
to signal the end of a test case.

Output Format
For each test case, if white player wins, please prints a “W”. If black player

&©

wins, please prints a “B”. If the test case is an even game, please print a “.

Sample Input

BBBWW
BBB.W
BB.WW
BBWWW
B.WWW
we

BBBWW
BBB.W
BB.W.
BBWWW
B.WWW
B@

Output for the Sample Input

6

Problem C

Throwing a Party
Input File: pc.in

Consider a company that has a hierarchical structure; that is, the “su-
pervisor” relation forms a tree rooted at the president. The personnel office
has ranked each employee with a conviviality rating, which is an integer. An
example is as follows.

You are responsible to plan a party for the company. In order to make
the party fun for all participants, you do not want an employee and his/her
immediate supervisor to attend at the same time. For instance, the two people
with conviviality ratings 11 and 14 in the above example are not supposed to
show up together, albeit their ratings are the highest in the company. The goal
is to maximize the sum of the conviviality ratings of the guests. For instance,
in the above example, a party with the highest sum (i.e., 66) of conviviality
has to exclude the five people with ratings 1, 3, 4, and 14.

Technical Specification

1. There are n (1 < n < 30) people in the company, each of them has a
unique ID from 1 to n. The ID of the president is 1.

2. For each 1 =1,2,...,n, the conviviality rating r; of the person with ID
1 1s a positive integer no more than 30.

Input File Format

The first line of the input file contains an integer indicating the number of
test cases to follow. Test cases are separated by a single blank line.

For each test case, the first line of input contains two integers n and r;.
For each 1 = 2,3,...,n, the i-the line of input contains two integers s; and r;,
where s; is the ID of the immediate supervisor of the person with ID 7.

Output Format
For each test case, output the maximum sum of conviviality ratings of the

guests.

Sample Input

W N = N
(ool BN é) BN |

16 1

o= W o
B O

WWOWWOOOHDGT D WNN - =
—_

N O W OoON N WD

Output for the Sample Input

15
66

Problem D

Leaf Comparison
Input File: pd.in

One of the methods for classifying hierarchical relations between different
objects is by representing them in a tree. Different methods of classification
may lead to different trees. In particular, trees have been used to represent
evolutionary splits among species.

An n-node tree is a connected graph with n — 1 edges. A rooted tree is a
tree with a specified node called the root. For a node v in a rooted tree T, the
parent of v, denoted by par(v), is the first encountered node from v towards
to the root. Node v is a child of par(v). A node without children is called a
leaf. Also let T[v] denote the maximal subtree of T rooted at v. Figure 1(a)
illustrates the structure of T'[v], and Figure 1(b) illustrates T'[2] of 7.

T

iy

1]

(a) (b)

Figure 1: (a) The structure of T'[v]. (b) T'[2] is shown within the bold triangle.

Suppose that there are two rooted trees 77 and 75, with N; nodes and NV,
nodes, respectively, such that the nodes of 7 (respectively, T5) are labelled
from 1 to N; (respectively, 1 to Na). Two leaf-agree isomorphic subtrees,
denoted by T} [v;] 2 T»[v;], where v; € Ty and v; € T, are defined recursively as
follows: Either v; and v; are two leaf nodes with the same label, or the children
of v; (say {vi;,Viy, .., vi,, }) and the children of v; (say {vj,,vj,,...,v;,}) can
form a one-to-one corresponding such that Ti[v;,] & Ty(v;,], Ti[vi,] = Talv,),
e s g Tl [’Uim] = Tg[’l)jm].

Assume that 77 has 2 < N; < 100 nodes and T3 has 2 < N, < 100
nodes. Please write a program to count the cardinality of the target set
{(v1,v2)| Ti[v1] = Ty[vy] for two non-leaf nodes v; € T} and v, € Ty }.

For example, consider two rooted trees 77 and T, shown in Figure 2(a) and
(b), respectively. In this example, T1[2] & T5[3], T1[4] & T»[4], and T3[3] =
T»[5]. Therefore, the output of this example equals 3 because the target set is

{(2,3),(3,5), (4,4)}.

Input File Format The input consists of a number of test cases. Each
test case consists of two rooted trees, which has the following format: The first
line contains one positive integer m; < 100, which is the number of edges of
the first tree. The next m; lines contain m; edges such that one line contains
one edge. Each edge is represented by two positive numbers separated by a
single space; the first number represents a node and the second one represents
its parent. The (m; + 2)th line contains another positive integer my < 100,

10

Figure 2: Two rooted trees 7} and 75 shown in (a) and (b), respectively.

which is the number of edges of the second tree. Then, the next ms lines
contain my edges of the second tree. Finally, a 0 at the (m; + mg + 3)th line
indicates the end of the first test case.

The next test case starts after the previous ending symbol 0. A -1 singals
the end of the whole inputs.

Output Format The output contains one line for each test case. Each
line contains an integer, which is the cardinality of the target set.

Sample Input

11

N = = O
N

—

Output for the Sample Input

w

12

Problem E
Red and White
Input File: pe.in

In a box, there are balls colored either red or white. To discover the color
of each ball, one must take the balls out of the box one at a time. If we know
the numbers of white balls and red balls, then we might not have to remove
all of the balls to find the color of each ball. The problem is to compute the
average number of balls that one has to draw from the box for him/her to
know the colors of all balls, providing that the numbers of red and white balls
are known to be m and n respectively.

Technical Specification
L. There are n (1 < n < 1000000) red balls.
2. There are m (1 <m < 1000000) white balls.

3. The balls are drawn from the box one at a time, without replacement.

Input File Format

The first line of the input file contains an integer indicating the number of
test cases to follow. Test cases are separated by a single blank line. Each test
case contains two positive integers n and m denoting the number of red and
white balls respectively.

Output Format

For each test case, compute the the average number of balls you have to
draw from the box for you to know the colors of all balls. You have to output
the number as a precise rational number f—l, where a and b are relatively prime
positive integers. For each test case, you should output the pair (a, b).

Sample Input

23

7 15

Output for the Sample Input

27
16 315

13

Problem F
Polygon Covering
Input File: pf.in

A line segment L in the first quadrant of the ry-plane can be specified by
four numbers a, b, p, and g such that for each point (z,y) on L, 0 < p < z < g,
and y =axz+b>0. Let Dy be the polygon enclosed by the line segment
L and the three lines z=p, z=q, and y=0. Given a set S; = {hy, ha,...,h,}
of n numbers with 0 < Ay < he < ... < hy, and max(a X p+b,a X ¢+ b) < hy,
a polygon E, is said to be a covering of Dy, if each point in Dy, is also in Fy,
and E; can be decomposed into a finite number of rectangles through a set
of vertical line segments such that the (vertical) height of each rectangle is an
element in S;. A covering of Dy is said to be optimal if its area is smallest
among all coverings of Dy,.

Given a line segment L specified by a, b, p, ¢, and aset S;, = {hq, ha, ..., hn}
, the problem asks to find the area of an optimal covering of Dy.

Example

Suppose L is specified by a = 1,b = 2,p = 0,¢ = 10, and Sy, is {1,5,9, 13}.
Figure 1 gives two coverings (whose areas are 90 and 100) of D;,, and the one
on the left is optimal. Both coverings can be decomposed into three rectangles.

13 13 i3 [S,
12 | 12

{
|
|

|
|
1
I
1
i
|
1
I
I
|
1

X
10 0 28

A et o izt s S e
3
T Pramtntt, sy Lre

Figure 1: Two coverings.

Input File Format

The first line of the input file contains an integer indicating the number of
test cases to follow. Test cases are separated by a single blank line.

For each test case, the first five lines give a,b,p, g, n, and the next n lines
give hi,hy, ..., hy. Note that a,b,p,q,n,hi, he, ..., h, are all integers, and
their ranges are: —10 < a <10, 0<b5<5000,0 <p<qg<5000,1<n<
3500, 1 < Ay < hp < ... < hy < 55000, 0 < min(a X p + b,a X ¢+ b), and
max(a X p+b,a X g+ b) < hy,.

Output Format

For each test case, print out the area of an optimal covering on a single
line. Note that the area should be printed with at least 3 digits of precision
to the right of the decimal point.

14

Sample Input

SN =N

O O =

13

111
47

13
48
74
83
91
115
156
164

Output for the Sample Input

90.000
3593.500

15

Problem G
Subset Selection
Input File: pg.in

Given an ordered set X = {z1,22,...,Zm} of m non-decreasing integers,
an ordered set Y = {y1,¥2,...,¥n} of n non-decreasing integers and a positive
integer k (< n), an ordered set Zy = {zi,29,...,2;} of k non-decreasing

integers is said to be a k-subset of Y if each element in Zy is also in Y
besides, the cost of Zy is defined to be Y i, d(z;, @(z;)), where d(z;, Q(z;))
is the difference between z; and Q(z;), i.e., d(z;, Q(z:)) = |z; — Q(z;)|. As
for Q(z;), it denotes the element z; in Zy which, among all elements in Zy,
has the minimum difference from z;, i.e., Q(z;) = 2; and d(z;, 2;) < d(z;, 1)
for all [# j. Without loss of generality, if there is more than one element in
Zy which has the same minimum difference from z;, the one with the smallest
index is chosen. A k-subset of Y is said to be optimal if its cost is smallest
among all k-subsets of Y.

Given X, Y, and k, the problem asks to find the cost of an optimal k-subset
of Y.

Example

Suppose X = {10,20,30,40}, Y = {12,24,36}, and k=2. There are
three 2-subsets of ¥: {12, 24}, {12, 36}, and {24, 36}, and their costs are
28(=2+4+6+16), 20(=2+8+6+4), and 28(=14+4+6+4), respectively. Clearly,
{12, 36} is optimal while the others are not.

Input File Format

The first line of the input file contains an integer indicating the number of
test cases to follow. Test cases are separated by a single blank line.

For each test case, the first m+1 lines give m (1 < m < 500) and the m
non-decreasing integers (each is between 0 and 35000) in X. The next n+1
lines give n (1 < n < 500) and the n non-decreasing integers (each is between
0 and 35000) in Y. The last line gives k.

Output Format
For each test case, print out the cost of an optimal k-subset on a single

line.

Sample Input

2
4
10
20
30
40
3
12
24

16

36

10
28
59
66
80
92
94
115
120
121
122

29
30
54
88
106

Output for the Sample Input

20
115

17

Problem H
Continued Fractions
Input File: ph.in

Let ap,a1,a2 -, a, be integers with a; > 0 for ¢ > 0. A continued frac-
tion(CF) of order n with coefficients ai,as---,a, and the initial term ay is
defined by the following expression

1

G+ ———— 71—

R +L

which can be abbreviated as [ag; a1, a2, -, ayg)
An example of a CF of order 3 is [1;2, 3, 4], which is equivalent to

1 43

2+§{_%

1+

We can see that any CF is rational, since it can be expressed as a fraction.
Write a program that converts any CF to a fraction in lowest terms, that is,
the numerator of the fraction is relative prime to its denominator.

Input File Format

The input contains several of problem sets, one set in a line. Each problem
set(line) consists of n + 2 numbers, which are n(1 < n < 12) the order of the
CF and followed by n + 1 numbers for ag,a,- - -, a, in sequence. Each value
of a; for 1 > 0 is between 1 and 5. The last set will consist of a single number
0 with no other number, which signifies the end of input.

Output Format
Your program should print one line for each problem set, where the nu-
merator is printed first then followed by the denominator.

Sample Input

4
3

O N W W
N N =
N =N
oW

Output for the Sample Input

43 30
45 16
73

18

