e Problems: There are 10 problems (20 pages in all, not count-
ing this cover page) in this packet.

e Problem Input: Input to the problems are through the input
files. Input filenames are given in the table below. Each
input file may contain one or more test cases. Test cases may
be separated by any delimiter as specified in the problem
statements.

e Problem Output: All output should be directed to standard
output (screen output).

e Time Limit: The judges will run each submitted program
with certain time limit (given in the table below).

Table 1: Problem Information Sheet

Problem Name Input File Time Limit

Problem A Sudoku-Solver pa.in 1 sec.

Problem B Payment Efficiency pb.in 1 secs.
Problem C Computer Connectivity pc.in 1 secs.
Problem D Camera pd.in 1 secs.
Problem E Cubic Curve Fit pe.in 2 secs.
Problem F Hill Decipher pf.in 2 secs.
Problem G Treasure Island pg.in 1 secs.
Problem H Distinguishing Coloring of Trees ph.in 1 secs.
Problem I Baseball Team Elimination pi.in 30 secs.
Problem J Weight-constrained Maximum-Density Subtree pj.in 3 secs.

Sudoku Solver
Input File: pa.in
Time Limit: 1 sec.

Sudoku is a popular puzzle demanding logic and patience. The aim of the
puzzle is to enter a numeral from 1 through 9 in each cell of a 9 x 9 grid made
up of 3 x 3 subgrids, starting with various numerals given in some cells(called
given). Each row, column and subgrid must contain only one instance of each
numeral. See Figure 1 and Figure 2 for an example and its solution.

Write a program that output the correct solutions to the puzzles in the
input file. You can solve these puzzles with or without the help of computer.

Input File Format

There is no need to read in the input file during your program execution as the
input file is already provided to you. There are 20 Sudoku puzzles in the input
file with the following format: Each row contains 9 consecutive numerals, 0
indicates that the cell has to be filled, and other numerals indicate that the
cell is given that numeral. Each puzzle consists of 9 rows, there are 180 rows
in total.

Output Format

Each row contains 9 consecutive numerals. There are 180 rows in total. And
row 1 to 9 is the answer to the first puzzle and row 97 — 8 to row 9: is the
answer to the i"* puzzle.

For example, the puzzle in Figure 1 is encoded as the left column below, and
its solution is encoded as right column.

530070000
600195000
098000060
800060003
400803001
700020006
060000280
000419005
000080079

534678912
672195348
198342567
859761423
426853791
713924856
961537284
287419635
345286179

Figure 1: An example of a Sudoku puzzle

9

7

2(16|7
41213

1

11915348

2(3|7|12(8|4

21816

2

1

7

6

51346718912

11918342

8519|761

41216853791

7111319124856

208 7|14]119]6]3(5

31415

Figure 2: The solution

Payment Efficiency
Input File: pb.in
Time Limit: 1 sec.

Consider £ kinds of coins with different values in dollars, and a toy of P
dollars. The problem asks to calculate the minimum number of coins involved
in the payment process for buying the toy. It is assumed that both parties, i.e.,
the buyer and the seller, have sufficient numbers of each kind of coin at their
disposal. For example, suppose that there are 6 kinds of coins with values 1,
2, 5, 10, 20, 50 dollars, and the price of the toy is 83 dollars. If a father wants
to buy the toy for his child, one possible payment process is that he pays for
the toy with one 50-dollar coin, one 20-dollar coin, one 10-dollar coin and one
5-dollar coin, and receives one 2-dollar coin in change. That is, 50 + 20 + 10
+ 5 - 2 = 83, which has 5 coins involved. Another possible payment process
is: 50 4+ 20 +20 - 5 - 2. For this example, any possible payment process will
have at least 5 coins involved, and hence 5 is the desired answer.

Input File Format

The first line of the input file contains the number of test cases. For each test
case, there are integers on a line. The first integer is £ (1 < k < 10), denoting
the number of different kinds of coins. The second integer is P (1 < P < 100),
denoting the price of the toy. There are k different positive integers in the
rest of the line, denoting the values of the coins. Among the k integers, the
smallest number is always 1, and the largest number is not greater than 100.

Output Format
For each test case, the output is a single line containing the minimum number
of coins involved in the payment process for buying the toy.

Sample Input

3

6 83125 10 20 50
6 36 1 24 34 39 46 50
6 421237 19 72

Output for the Sample Input

w

Computer Connectivity
Input File: pc.in
Time Limit: 1 sec.

Consider a set of N computers numbered from 1 to N, and a set S of
M computer pairs, where each pair (4,7) in S indicates that computers i and
j are connected. The connectivity rule says that if computers 7 and j are
connected, and computers j and k£ are connected, then computers 7 and k are
connected, too, no matter whether (i,k) or (k,i) is in S or not. Based on S and
the connectivity rule, the set of N computers can be divided into a number
of groups such that for any two computers, they are in the same group if and
only if they are connected. Note that if a computer is not connected to any
other one, itself forms a group. A group is said to be largest if the number
of computers in it is maximum among all groups. The problem asks to count
how many computers there are in a largest group.

Input File Format

The first line of the input file contains the number of test cases. For each test
case, the first line consists of N (1 < N < 30000) and M (1 < M < 100000),
where N is the number of computers and M is the number of computer pairs
in S. Each of the following M lines consists of two integers i and j (1 < i <
N,1 < j < N,i # j) indicating that (i,j) is in S. Note that there could be
repetitions among the pairs in S.

Output Format
For each test case, the output should contain one number on a line, denoting
the amount of computers in a largest group.

Sample Input

N W~ WN
N W NN D

[
(@]

= N O O PN
[
N

—
o

O~ NN OO Wowwer
N

—_
(@)

Output for the Sample Input

Camera
Input File: pd.in
Time Limit: 1 sec.

AIP is a company that specializes in designing advanced digital cameras.
In 2005, AIP has introduced a camera that can automatically classify the pixel
in the image into four types: water, soil (e.g., crops), cement (e.g., highways)
and others. For the 2006 model, some new features are to be added to the
camera. A fundamental tool for the new features is the calculation of the
largest single connected region of pixels of the same type. Furthermore, to
make the camera marketable, this new feature must be done in real-time (less
than 1 second). You are hired to add this functionality to the camera.

Technical Constraints
1. Image size is man, where 1 < m,n < 2,560.

2. In the original image, water areas are denoted by pixels having value of
1, soil areas are denoted by pixels having value of 2, cement areas are
denoted by pixels having value of 3, and the other areas are denoted by
pixels having value of 0.

3. Two pixels are considered belonging to the same area if both of the
following two conditions are met:

(a) They both are of the same type (both are water, soil, cement, or
others pixel type).

(b) One pixel is connected to the other pixel in the north, south, east,
or west direction.

(c) Pixel connectivity is both symmetric and transitive.

Input File Format

The first line contains 1 integer indicating the number of test cases to follow.
For each test case, the first line contains two integers, m,n, separated by a
single space. Each of the next m lines contains n numbers, with each number
being 0, 1, 2 or 3. The numbers on each line are connected without any space in
between. There is a single line containing a single ”.” between two consecutive
test cases.

Output Format

For each test case, output two numbers on a single line. The first number
is the largest connected region type, {0, 1, 2, 3} in the image. The second
number is the number of pixels in that region. You may assume that there is
always a unique largest connected region in the test image.

Sample Input

3 4
3220
0111
1221
4 3
001
012

012
011

Output for the Sample Input
14
05

Cubic Curve Fit
Input File: pe.in
Time Limit: 2 seconds

Given a set of N two-dimensional points S = {(z;,y;) | 1 < i < N}, the
cubic curve fit problem is to find a cubic function y = f(x) = ax®+bx*+cx+d
such that the squared error € = SN (y;— f(;))? is minimized. This problem
asks you to report four parameters a, b, ¢, d by round-off with the precision to
4 decimals for a given data set S = {(z;,9;) | 1 <i < N}.

Input File Format

The first line of the input file always contains one integer indicating the number
of test cases to come. Each test data set consists of N + 1 lines, where the
first line indicates the number of points N (7 < N < '9) which is followed by
N pairs of floating-point numbers to 2 decimals.

Input File Format
For each data case, report the estimated parameters a, b, ¢, d by round-off
up to 4 decimals in a single line.

Sample Input

2

7

-3.01 -34.99
-1.99 -9.01
-1.01 1.01

0.01 0.99
0.99 -3.01
2.01 -5.01
2.99 1.01
8
2

.00 -16.00
-1.00 0.00
-0.50 2.00
00 2.00
50 1.50
00 2.00
50 5.00
00 12.00

0.
0.
1.
1.
2,
Output for the Sample Input

0.9916 -1.9713 -2.9593 0.9307
2.0000 -1.0000 -1.0000 2.0000

Hill Decipher
Input File: pf.in
Time Limit: 2 seconds

Let T={A, B, C, ---, X, Y, Z } be the set of 26 English letters, and
let the letters A, B, ---, Y, Z be represented as numbers 0, 1, ---, 24, 25,
respectively. Denote Zos = {0, 1, ---,24,25}. An integer linear transfor-

a b
mation (mod N) can be defined asf([x]> = [x] :Hlx],
Y c d Y Y

where a,b,c,d,z,y € Zy. The inverse integer transformation exists only if
gcd(ad — bey, N) = 1, that is, (ad — be) and N are relatively prime. This
problem assumes that N = 26.

A Hill encipher takes a message, a character string consisting of English
letters from I'={A B, C, ---, X, Y, Z }, as input and outputs an enciphered
message of the same length based on applying an integer linear transformation
successively on the pair of the characters of the input message string, for exam-
ple, ' EUREKA’ could be decomposed as EU,RE,KA, and is finally enciphered

9 13
as 'KQXUMU’ based on the transformation matrix H = . A corre-
2 3
sponding Hill decipher takes 'KQXUMU’ as input associated with the integer
P q 3 13
transformation matrix H~! = = which converts "KQX-
ros 24 9
UMU’ back to TEUREKA’. This problem asks you to design a Hill decipher
based on a given Hill encipher to decipher an enciphered message.

Input File Format

The first line of the input file always contains one integer indicating the number
of test cases to come. Each test data set consists of two lines, where the first
line gives four integers a,b, ¢, d, corresponding to an integer transformation

a b
matrix H = for the Hill encipher followed by an even integer n which
c d
is the length of the enciphered message. The enciphered character string of
length n is given in the next line.

Output Format
Four integers p, ¢, r, s corresponding to the Hill decipher matrix H~! are shown
in the first line with the deciphered message appearing in the next line.

Sample Input

2
913236
KQXUMU
521358
MSMXIRCH

Output for the Sample Input

313 24 9
EUREKA

21 2 13 21
COMPUTER

10

Treasure Island
Input File: pg.in
Time Limit: 1 sec.

A theme park called “Treasure Island” is newly opened. In the theme park,
there are islands connected with bridges, where bridges are directed and one-
way only. One major game of the theme park is a competition for collecting
hidden treasures. A group of players may begin their search from an entrance
island. In each island, some keys are placed in an obvious place. These keys
can open a particular treasure if players can find it.

Image the keys and treasures have unlimited supply. Once a treasure is taken
by some player, a new treasure will be supplied automatically. To prevent
malicious players from collecting all the visible artifacts as their potential
treasures, image a treasure is not removable if a player does not have correct
keys at his/her hand to open the locks of treasures. In this theme park, players
can choose different routes (even loops) to collect their treasures. Once they
collect all the needed treasures, they can leave from an exit island.

You are the staff of the park. Everyday, you need to deploy keys and treasures.
The deployment is different from day to day. In order to make the game easy
and fair, a basic rule of key-treasure deployment is:

For any path (no matter how players choose their routes), a key should
always appear first (shown to players) before its treasure’s hidden island.

So, if a treasure X is hidden on some island Y, before a player visits island
Y, a key for treasure X should be already shown to the player.

Entrance

Island 2

Figure 1: A sample deployment

Let a key of treasure X be KeyX. In figure 1, a deployment of treasures
and keys is illustrated. In this deployment, treasure A is placed in island 4
and treasure B is placed in island 2. Three keys are placed in island 1,3, and
4 respectively.

In this sample deployment, treasure B satisfies the rule. Players choose any

11

not satisfy the rule — if a player chooses the route 1->2->4, he may see the
treasure A without obtaining a KeyA first.

Please write a program for the staffs of theme park. Given a deployment,
please find out the treasures whose key-treasure deployments violate the basic
rule.

Input File Format

The first line of the input data is a number N. N is the number of test cases.
Each test case begins with numbers M and D. M is the number of islands.
D is the number of deployment lines. By default, islands are indexed from 1
to M. Island 1 is the entrance island and island M is the exit island. Next, D
lines of deployments are listed. Each deployment line begins with the island’s
index and then followed by keys or treasures. If a treasure X is deployed in
the island, a string ”X” is added in the deployment line, where X is 7A”-"7”.
If a KeyX is placed in the island, a string "KX” appears in the deployment
line. Items in a deployment line are separated by spaces. A ”$” indicates there
are no more items in the deployment line. NOTE: If an island is not listed in
the deployment lines, it does not have treasures or keys deployed. NOTE: The
number of directed bridges from an island to another island is not limited to
one.

Following the deployment lines are information of directed bridges. Bridge
information begins with a number B. B is the number of directed bridges.
Next, B lines of bridges are followed. Each bridge is denoted by the index of
source island and destination island.

Technical Specification
1. N(1<N <20).
2. M (1< M < 1000).
3. B (1< B < 10000).

Output Format
For each test case, output the treasures (in capital letters) that violate the
rule in one line with alphabetical order such as: ACDFG (without spaces)

Sample Input

KB $

B §

KA $

A KB $

B RO W N R D e

12

S ow
RN

Output for the Sample Input

A

13

Distinguishing Coloring of Trees
Input File: ph.in
Time Limit: 1 sec.

A rooted tree T consists of a set V(7T of vertices (in this problem, the
vertices are always represented by positive integers). One of the vertices, say
r € V(T), is the root of the tree. Each vertex v € V(T) other than the root r
has a unique father, where the root has no father. If v is the father of u, then
we also say u is a son of v.

A 2-colored rooted tree is a rooted tree in which each vertex is colored by
one of the two colors: black and white.

Figure 1 below shows a 2-colored rooted tree, where each white vertex is
represented by an unfilled circle, each black vertex is represented by a filled
circle. The father-son relation is represented by an arrow: if there is an arrow
from vertex u to vertex v then v is the father of u.

100 11 3 14 15 16 17 18

Figure 1: A 2-colored rooted tree 7.

An automorphism of T is a permutation o of its vertex set V(T') (i.e., a
one-to-one mapping from V(T') to V(7)) such that if v is the father of u, then
o(v) is the father of o(u). Moreover, for any vertex v, o(v) is black if and only
if v is black. Note that for any rooted tree T', the identity map, id, defined as
id(z) = x for all vertices x is an automorphism. This automorphism is called
the trivial automorphism.

A 2-coloring of a rooted tree is called distinguishing if it only has the trivial
automorphism. Two 2-colorings of T', say f and ¢, are called isomorphic if
there is a permutation o of the vertices of T' such that if v is the father of u,
then o(v) is the father of o(u). Moreover, for any vertex v, o(v) is black under
the coloring f if and only if v is black under the coloring g.

Given a rooted tree T', your task is to compute the number of non-isomorphic
distinguishing 2-colorings of T'.

Input File Format

The input consists of a number of rooted trees, say 11,715, - - -,T,,, where m <
20. Each tree has at most 100 vertices. Information of each of the rooted trees
are contained in a number of line. Each line starts with a vertex (which is
a positive integer) followed by all its sons (which are also positive integers),
then followed by a 0. Note that 0 is not a vertex, and it indicates the end of
that line. Consecutive integers in a line are separated by a single space. A
line containing a single 0 means the end of that tree. The next tree starts in
the next line. Two consecutive lines of single 0 means the end of the input.

Output Format

14

which is the number of non-isomorphic distinguishing 2-colorings of 7.

Sample Input

230

o »
~N ol w
(@]

QO P WOWNPFPFOWNFOFOR
~N o O N

Output for the Sample Input

O N ON

Sample Input Explanation

The input consists of four trees. The first tree T} has root 1, and 1 has two
sons: 2 and 3. This tree has two distinguishing 2-colorings: Any distinguishing
2-coloring must color exactly one of 2,3 by black color. The vertex 1 can be
colored either black or white. Observe that the coloring which colors 1,2
black and color 3 white is isomorphic to the coloring which colors 1,3 black
and colors 2 white.

The second tree has root 1, which has three sons: 2,3, 4. This rooted tree
has no distinguishing 2-colorings. For any 2-coloring of this tree, two vertices
of 2,3, 4 receive the same color. Without loss of generality, assume that 2,3
receive the same color. Then the permutation interchanges 2 and 3, and fixes
every other vertex is a non-trivial automorphism of this 2-colored tree.

15

Basketball Team Elimination
Input File: pi.in
Time Limit: 50 sec.

Dr. Jay was a famous basketball player and now he is still crazy about
basketball games. However, he only has interest in the teams with a chance to
win the championship. Consequently, he loves watching the games played by
those teams and hates spending time on the losing teams. A team is eliminated
at some point during the season, if it cannot finish the season as the champion.

There are numerous basketball leagues all over the world. Dr. Jay is
tired of figuring out himself which teams still have the chance to become the
champion for each league. Dr. Jay asks you to write a program for him to
find the eliminated teams of a league automatically.

Suppose all the teams can only win or lose a game, i.e., there is no tie. At
the end of the season, the team winning most games is the champion. If there
is a tie, then there will be extra games to determine the final championship.
Now, write a program to compute which teams are eliminated based on current
winning records and the remaining games.

Input File Format

The input file begins with the number of leagues M, i.e., the number of test
cases. For each league, it starts with a number N. The following N lines are
the names of the N teams. The next N lines are the current records of the
corresponding teams, where each of them contains N +1 numbers. The first
number indicates how many games the corresponding team has won, and the
I-th of the following N numbers is the number of remaining games against the
I-th team. The input of a league ends with a line with "@” alone. The number
of teams is at most 100 and the number of remaining games between any two
teams is no more than 10.

Output Format

For each league, the output should consist of the names of eliminated teams
which are listed in the order as appearing in the input file. If there is no team
eliminated, then print ”No team is eliminated!”

Sample Input

16

@ B O1
N W
= N
=
N =
_ =
N O
SN

Suns

Spurs
205
050

Output for the Sample Input

League #1:

Suns

Spurs

T6ers

Heat

League #2:

No team is eliminated!

17

Weight-constrained Maximum-Density Subtree
Input File: pj.in
Time Limit: & sec.

Given a sequence S of n integer pairs [a;, w;] with w; > 0fori=1,2...,n,
and two integer weight bounds Wi, and wyay, the weight-constrained maximum-
density segment problem is to find a consecutive subsequence S(i,j) of S such
that the density of S(i,j), i.e., L%J is maximum over all other
subsequence of S satisfying wy, < w; + wiy1 + ... + wj < Wpe,. This prob-
lem arises from the investigation of non-uniformity of nucleotide composition
within genomic sequences, which was first revealed through thermal melting
and gradient centrifugation experiments. Researchers observed that the com-
positional heterogeneity is highly correlated to the GC content of the genomic
sequences, and this motivates finding GC-rich segments.

Here you need consider a related problem on trees. Before proceeding to de-
scribe the problem, some necessary definitions in terms of graph theory are
first given. A graph G is a pair (V, E), where V is a finite set and F is a
subset of {(a,b) | (a,b) is an unordered pair of V'}. For an edge e = (u,v), u
and v are end-vertices of e, and both vertices are adjacent each other. A path
P = (vy,v1,...,1), is a sequence of distinct vertices such that any two con-
secutive vertices are adjacent. A graph G is connected if every pair of vertices
is connected by a path in G. A subgraph of G = (V, E) is a graph (V', E’) such
that V' CV and E' C E. A treeis a connected graph and has no cycles. For
a tree T, a subtree of T is a connected subgraph (V', E') of T, where V' C V
and E' C E. Note that a single vertex can also be regarded as a subtree.
The problem is now described as follows. A biologist, William, attempts to
analyze the ancestor-descendant relation for n species connected by a tree
T = (V,E), called an evolutionary tree. Each species v of T is associated
with a value-weight pair [val,, w,], where value val, is an integer and weight
w, is a non-negative integer. The density of T, denoted by d(T), is defined
as L%J The weight-sum of T, denoted by w(T), is X,y w,. William
believes that those species form a maximum-density subtree in 7' (satisfying
a given weight constraint) diverge from a common ancestor. He formulates
the following problem: Given an evolutionary tree T = (V, E) of n speci-
fies associated with value-weight pairs, and two bounded integers wy,, and
Wmax, compute the density of a maximum-density subtree 7" in T such that
Wmin S ’(U(T,) S Wmax-

Assume that 7" has 2 < |[V| < 2000 specifies represented by {1,2,...,|V]},
1 < Wpin < 10000 and 1 < wpae < 10000. Please write a program to compute
the density of a weight-constrained maximum-density subtree of T'. If such
a tree does not exist, your program needs to output -1. For example, given
Wmin = 4 and wy,q; = 100, the density of a weight-constrained maximum-
density subtree 7" = (V', E') of a tree T' = (V, E) shown in Figure 1 equals 4.
Note that the vertex V' = {4,5,6,7} and E' = {(4,5), (4,6), (6,7)}.

Input File Format
The input consists of a number of test cases. Each test case consists of one
tree, which has the following format: The first line contains two numbers,

18

pppppp

[0,6] [10,1]

[10,20] [1,1] 1]

3 [5,100]

[0,6] 5

Figure 1: An illustration of a weight-constrained maximum-density subtree in
a tree

Winin and wp,q, separated by a single space. The second line contains one
positive integer n < 2000, which is the number of species of the input tree.
The next n lines contain n species such that one line contains one specifies and
the corresponding value and weight. Each line is represented by three integers
separated by a single space; the first number represents a species, the second
one represents its value, and the third one represents its weight.

The next line contains one positive integer m = n — 1, which is the number of
edges of the input tree. The next m lines contain m edges such that one line
contains one edge. Each edge is represented by two positive integers separated
by a single space; the first integer represents one end-vertex of the edge, and
the second one represents the other end-vertex. Finally, a 0 at the (n+m+4)th
line indicates the end of the first test case.

The next test case starts after the previous ending symbol 0. A -1 singles the
end of the whole inputs.

Output Format

The output contains one line for each test case. Each line contains an integer,
which is the density of a weight-constrained maximum-density subtree of the
corresponding input tree.

Sample Input

'—L
o
o

DO WN = 0
= O
(@]
0]
N
(@]

N W+~ O
e)

19

8 5 100

AN M WO O~

(o]
i
<
M AN O O O

1 0 100
2 0 100

©
© ©
[SPI N

5 0 100
6 0 100

N M ¢ o O
O~ NN H < O

Output for the Sample Input

20

