2010 National Collegiate Programming Contest

e Problems: There are 7 problems (14 pages in all, not counting this cover
page) in this packet.

e Program Input: Input to the programs are through the input files. Input
filenames are given in the table below. Each input file may contain one
or more test cases. Test cases may be separated by any delimiter as
specified in the problem statements.

e Program Output: All output should be directed to standard output
(screen output).

e Time Limit: The judges will run each submitted program with certain
time limit (given in the table below).

Table 1: Problem Information Sheet

Problem Name Input File Time Limit
Problem A Intersection pa.in 5 sec.
Problem B Dominant Matrix pb.in 1 sec.
Problem C Survival Ratio pc.in 1 sec.
Problem D Center of a City pd.in 5 sec.
Problem E Jobs pe.in 10 sec.
Problem F' Where to Go for Vacation pf.in 1 sec.
Problem G Non-Separating Path pg.in 3 sec.

Problem A

Intersection
Input File: pa.in
Time Limit: 5 seconds

To recover 3D depth information from a stereo pair of image is important to mobile robot
navigation. Before using triangulation to calculate the depth, one has to make sure that two
lines are intersecting at one point. The stereo image to recover the 3D depth information is
illustrated in Figure 1.

= x
By s P,r-’ -
. o -~
"""\-\.__ _d_.-" s -H"‘-\-\. .-"J
g T -
e 1 o Sl
- ., e
---_____ 1.__‘ i - 1-\""'-\..__
.-:".".-:-.. e o et WIS RN . ST PR R o
} o)

01 s

Figure 1: A stereo pair of images.

Given two or more lines, the goal is to find whether these two or more lines are all
intersecting at one point.

Input File Format

The input consists of a number of test cases. The first line contains two positive numbers
n, m to indicate the number of test cases to follow and the number of lines for each test
case, respectively. For each test case, there are m lines of input. Each line contains six real
numbers, (x1, 41, z1)and (x2, Yo, 22), denoting two points on the given 3D line. The accuracy
for the intersection point is up to 0.001.

Output Format
The output should indicate the order of case at the first line of each case, followed by Yes

or No to indicate whether the given lines are intersected at one point. If Yes, also output
the intersection point (X, Y, Z) with the accuracy rounded to 0.1.

Sample Input

3 4

1.0 2.0 3.00.00.00.0
1.0 2.0 3.05.00.00.0
1.0 2.0 3.03.04.00.0
1.0 2.0 3.04.03.02.0
4.0 3.03.01.0 2.0 3.0
4.0 3.0 3.0 3.04.05.0

8.0 6.0 6.0 6.0 8.0 10.0
2.03.01.04.05.009.0
2.0 2.0 2.0 3.04.06.0

2.0 2.0 2.0 30.0 20.0 30.0
3.02.02.011.0 2.0 3.0

2.0 5.0 2.0 12.0 20.0 30.0

Output for the Sample Input

case 1

Yes 1.0 2.0 3.0

case 2
No

case 3
No

Problem B
Dominant Matrix
Input File: pb.in
Time Limit: 1 second

A real square matrix A € R™", where A = [a;5], 1 <4, 7, < n, is said to be a diagonally
dominant matriz if

’aii| > Z ‘aij|7 1<7<n

This problem asks you to write a program to detect if a real square matrix is diagonally
dominant.

Input File Format

The first line of the input file always contains one integer K indicating the number of
test cases to come. Each test data set consists of n 4 1 lines, where the first line gives the
dimension of the matrix, followed by = lines, each line contains n floating-point numbers
with the format 76.1f”, which is a matrix to be detected. Note that K < 10 and n < 8 in
this problem.

Output Format
A single line of K < 10 consecutive characters consisted of Y and N will be reported,

where Y means a matrix is diagonally dominant and N means the tested matrix is not
diagonally dominant.

Sample Input

4
3
-4.1 1.2 2.8
1 3.1 -1.1
0 -2.7 b
4
5.0 1.0 -2.0 -1.9
-2.9 7.0 -2.0 -2.0
1.1 1.2 4.0 1.5
2.2 3.3 -4.4 .5
5
50 4.0 0.9 0.0 0.0
0.0 7.0 0.9 2.1 3.9
1.0 4.0 9.1 3.0 1.0
0.3 1.0 9.2 19.9 -9.3
3.1 4.2 5.3 2.4 15.1
8
8.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
-1.0 8.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0
1.0

1
1

1.0
1.0

1

1.0
1.0

1

1.0
1.0
8.0
-1.0
-1.0
-1.0

1.0

8.0
-1

-1.0
-1.0
-1.0
-1.0
-1.0
-1.0

-1.0
-1.0
-1.0
-1.0
-1.0
-1.0

8.0
-1

.0

.0
.0

.0

.0

.0

-1.0
-1.0
-1.0
-1.0

1.0

8.0
-1.0

8.0
-1.0
-1.0

-1.0
-1.0
-1.0

1.0
8.0

Output for the Sample Input

YNYY

Problem C

Survival Ratio
Input File: pc.in
Time Limit: 1 second

Cartesian is a moon of the gas giant Polyphemus, which orbits Alpha Centauri A. Discov-
ered by the first inter-stellar expedition in 2129, Cartesian has been mostly neglected due to
the lack of diversified life forms like its more famous sibling moon named Pandora. Despite
the harsh condition on Cartesian, bountiful water and living creatures are discovered on the
planet surface. One of the creatures is a sort of intelligent one dimensional life forms live on
non-overlapping triangular formations with one edge coincident with the normal water level.
As shown in Figure 1, we can see five of such habitations for these creatures. All creatures
live on the edges of the triangles, and they can not survive under water; hence, each of these
triangles is a closed community on its own. To make matters worse, they are facing extreme
climate changes, and after thorough studies, it is determined that if greater than or equal to
90 percent of the triangle is submerged under water then the habitation will cease to exist,
i.e., all creatures on that triangle will eventually die out. You are to write a program, given
the layout of the planet Cartesian and a sequence of water levels, calculate and print out the
number of surviving habitations.

(%o Vo)
A
f./"l.*f (%2 y2)
e _‘ -
/ "; (%1 1) \'\‘\"\ ,r'h‘\l i
Ao AN FAR A
s / re Yoo ! \ £\
P / g i * / F
Vi / s Y AN ! ! ! Y
4 / 4 ' Y / \ / y
/ II,‘ e v I‘ . \“ S ; lll"I y s
s Vi ; 1 A Vi 4 ! kN
eg e, e; e =¥} Xg €10

Figure 1: Sample habitations on planet Cartesian, with the horizontal line presents the
normal water level.

Given two or more lines, the goal is to find whether these two or more lines are all
intersecting at one point.

Input File Format

The input file is a text file, it contains a sequence of data lines with 4 lines of text
describing a single test case. There is no limit on the number of lines that any input file can
have, the program should keep on processing test cases until the end-of-file is reached, should
there be inconsistency in the data describing any test case, a '0’ should be reutned as the
result. For each test case, the first line is a number, n (1 < n < 20), indicating the number of
habitations. The second line, contains 2n integers in ascending order, eg, €1, ..., €2, 2, €25, 1,
defining the base regions of the habitations at the normal water level, i.e., (eg,0) — (e1,0) is
the base of the first habitation and (es, 2,0) — (e2,_1,0) is the base of the n'* habitation.
The third line, contains 2n integers, xo, Yo, T1, Y1, ---, Tn_1, Yn—1, Which are the peak points of
each habitation. The fourth line is a sequence of k£ (1 < k < 20) integers, ho, h1, ..., hgp_1,

which are the proposed water levels.

Output Format

For each test case, output a sequence of k integers, sq, s1, ..., Sk_1, where s; is the number
of survived habitations with water level h;.

Sample Input

>N
© W b
© o
= N
o

©
[¢)]

4 8 10
10 5 20
16 18

O~ NDNDNWRF P W

Output for the Sample Input
310
110

Problem D
Center of a City
Input File: pd.in
Time Limit: 5 seconds

Herbert is a billionaire who wants to hire the best programmers in the world and open
a software service company near the center of a big city. Although the city is big, it has a
very convenient subway system. Herbert wants to buy an office near a subway station which
can reach every part of the city quickly by subway.

For simplicity, assume that one can go from any subway station to any other subway
station, and the subway system contains no cycles.

The center of the city where Herbert wants to buy an office nearby is define as the subway
station which can go to any other station with minimum number of stops.

For example, consider a city where the subway system is shown in the following figure.

9

|
1--2--3--4--5--6--7--8

I

10

|

11

|
12

The center of this city is defined as the subway station 4 since it can reach any other station
by at most 4 stops. All other stations need at least 5 stops to reach the farthest station.

You are going to write an efficient program to solve the problem with a large number of
subway stations.

Input File Format

An instance of the problem consists of
1. the number of subway stations n, and
2. the description of the subway system.

Since the subway system is connected and contains no cycles, it can be described by a rooted
tree.

1. Select any station as the root.
2. For each non-root station, specify its parent station.

Assume that the stations are numbered by 1,2, ..., n. Without loss of generality, assume
that station 1 is the root. Each instance is described by n integers, and they are stored in
[(n —1)/20] + 1 lines in the input file.

1. The first line is the integer n.

2. The following lines contains n — 1 integers, at most 20 integers in a line.

Let the number n be the first integer. Suppose that the i-th integer is 7. This means that
the parent station of station ¢ is station j. In this problem, we assume that 1 < n < 10000.
If n =1, then station 1 is the center.

Notice that the test data file may contain more than one instances. The last instance is
followed by a line containing a single 0.

Output Format

The outputs for each test case is the center of the city, which has been defined above. If
there are more than one centers print all the centers.

Sample Input

12
1234567331011
6

12345

0

Output for the Sample Input

Problem E
Jobs
Input File: pe.in
Time Limit: 10 seconds

We want to schedule n jobs to run on three types of machines. These job must run
sequentially, i.e., we can do only one job at a time, and the ¢-th job cannot start until the
i — 1-th job finishes. We assume that each job requires one among many possible machine
combinations of machine A, B, and C. For example, a job j; may require (a) two machine
A, or (b) one machine A, one machine B, and one machines C. To simplify the notation we
use (2,0,0) for the first combination and (1,1, 1) for the second combination. Let the i-th
job be 7; so job j; has a set of vectors of these possible machine configurations. For example,
the set of possible machine configurations for job j; could be {(2,0,0),(1,1,1)}. We also
assume that even when a job j; can run in several machine configurations, the execution
time 7; remains the same.

We want to minimize the total cost to run all jobs. We assume that it costs A amount of
money to use a machine A for an unit of time. Similarly we define B and C accordingly. In
addition, once you start using a machine, you must pay for the machine until all jobs finish,
even for the time that you are not using the machine.

Now given the number of jobs (n), possible machine configurations for all jobs (m;), the
execution time t; for all jobs, and the cost of using a machine A, B, or C' for an unit of time,
please compute the minimum cost to finish all jobs. We assume that the number of all three
machines are unlimited.

Technical Specification
1. There are n jobs, where 1 < n < 30.
2. Each job j; has m; possible machine configurations, where 1 < m; < 10.
3. The execution time of job ¢; is a positive integer no more than 100.

4. The costs of using a machine for an unit of time are A, B and C, where 1 < A, B,C
< 100.

5. Let rq, 1, and 7. be the number of machines in a machine configuration, then 0 <
TayTh, Te < 200.

Input File Format

The input file contains a set of test data and the first line of the input is the number of
test data. Each test data consists of two parts. The first part has one line containing the
number of jobs n, and A, B, C — the cost to use a machine A, B, or C' for an unit of time
respectively. The second part has n lines. The i-th line starts with ¢; and m;, then the m;
machine configurations that could run job j;.

Output Format

The output for each test case is a single line containing the minimum cost to run all jobs
for that test case.

Sample Input

N = N =
=N W
O O b
S O O
=

Output for the Sample Input

15

10

Problem F
Where to Go for Vacation
Input File: pf.in
Time Limit: 1 second

Recent news reported that about 60% of people working in the high-tech companies want
to leave their jobs. These people are tired of long working time and high pressure. The CEO
of Happy Software read this news and decided to offer vacation for his employees. The
coming question is where to go for vacation. The CEO selects many beautiful cities like
Paris, Los Angels, London, and so on. He thinks that employees in the same division should
have vacation to the same city so that they can have common experiences and topics to
talk about. The employees in different divisions should go to different cities so that they
can share souvenirs and photos. Besides, in each division only one employee can leave for
vacation at a time; otherwise, the performance of the division will be too low.

For an employee 7, he/she has a desired staying duration ¢;; for each city j. Since there is
a big project to be completed soon, each employee i must finish his/her vacation and come
back within d; days from now on. The value of d; depends on the importance of the employee
to the coming project. A division cannot go to a city if there exists no feasible schedule for
every member to come back in time. If a division has no place to go for vacation (due to
place collision with other divisions or vacation deadlines of members), the company will give
$50,000 compensation to the division. Now the CEO asks for your help to write a program
to determine the minimum amount of compensation he needs to pay.

Technical Specification
1. There are M cities to be arranged, where 1 < M < 100.

2. There are N divisions, where 1 < N < 100.

3. Each division k consists of ny employees, where 1 < n; < 10. (Each employee belongs
to exactly one division.)

4. For the staying duration ¢;;, 1 < ¢;; < 10.

5. For the deadline d;, 1 < d; < 100.

Input File Format

The first line of the input file contains an integer, denoting the number of test cases to
follow. For each test case, the first line contains two positive integers M and N. The next
line contains the number of employees n; in division 1, followed by n, lines for employee %
(1=1,2,...,n1), each containing (M + 1) positive numbers, where the first one is the dead-
line d; and the remaining are ¢;; (j = 1,2,..., M). Similarly, the next (ny + 1) line contains
the number of employees ny in division 2 and data of employees in this division. Data of
the remaining (N — 2) divisions are also given in the same format. The next test case is
separated from the previous one by one empty line.

Output Format

11

For each test case, output the minimum amount of compensation on one line.

Sample Input

2 // two test cases

2 2 // two cities and two divisions

3 // three employees in division 1
10 2 2

33

23
// two employees in division 2

4 3

34

~N OO

WO = WOl W
NN

Output for the Sample Input

0
50000

12

Problem G

Non-Separating Path
Time Limit: 3 seconds

Let G = (V, E,w) be an undirected connected graph with nonnegative node weight w.
For two vertices s and t, an st-path is a path P = (vg = s,v1,v9,...,v = t) from s to
t. In this problem, a path must be a simple path, i.e., v; # v; forany 0 < i < j <[A
path is “non-separating” if the remaining graph is still connected after removing the path.
Precisely speaking, an st-path P is non-separating if the subgraph induced by V — V(P) is
connected, in which V' (P) denotes the node set of P. The weight of a path is the total weight
of the nodes on the path. It is known that finding a minimum weight non-separating path in
general graphs is an NP-hard problem but it can be efficiently solved for “grid graphs”. In
this problem, you are asked to design a program for finding minimum weight non-separating
paths in grid graphs.

An m x n grid graph M can be thought of as an m x n matrix such that V(M) =
{M;;|0 <i<m,0<j<n} and there exists an edge between two consecutive nodes in the
same row or the same column. The set of nodes in the first or the last row and the first
or the last column is called as the boundary of the grid graph. As you can see, each node
except for the boundary nodes has exactly four neighbors. We assume that s must be on
the boundary and m,n > 3.

For example, the left and the right parts of Figure 1 are the same 4 x 3 grid graph, in
which each node is labeled by its weight. In the left, the bold line is a minimum weight
st-path but it is not a non-separating path. In the right, the bold line shows the minimum
weight non-separating st-path. For this instance, the minimum weight of any non-separating
st-path is 15.

Figure 1: A separating path and a non-separating path in a grid graph

Technical Specification

1. The number of nodes in each grid graph is bounded by 40000, i.e., mn < 40000.
2. The weight of any node is a nonnegative integer and at most 100000.
3. The total weight of all nodes in a grid graph is at most 23!

4. m >3 and n > 3.

Input File Format

13

There are several test cases. For each test case, the first line contains two integers m and
n which are the numbers of rows and columns, respectively. The next m lines contains the
weights of the nodes in an m x n grid graph M as follows:

w(M(),O) U}(MOJ) w(MOVQ) C UJ(MO’”_I)
w(ML()) w(Ml,l) U)(Ml,g) . w(Ml,n—l)
W(Myy10) w(Myy11) W(My15) ... w(Myy 11 1)

The last two lines of each test case are the row and column indexes of the nodes s and ¢,
one line for one node. The row index is an integer between 0 and m — 1. The column index
is an integer between 0 and n — 1. The input ends with a case that m =0 and n = 0.

Output Format

For each test case, output the minimum weight of any non-separating path from s to ¢
in one line.

Sample Input

62

N = 00 W
N = = N
N O O

W NN, DR, ONWD O
O W

BN O OO0 T NWEFE, WNEFE P, O

O O = = N
o

O O - B
[N

=
[N

=
=

Output for the Sample Input

7
15
11

14

